• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, May 17, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New study links red tides and dead zones off west coast of Florida

Bioengineer by Bioengineer
April 26, 2022
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

MIAMI—A new study found that when red tides began in early summer and continued into the fall, low oxygen areas—or dead zones— were more likely to also occur. This study by scientists at the University of Miami Rosenstiel School of Marine and Atmospheric Science, and NOAA collaborators is the first study to link low oxygen—or hypoxia—to red tides across the west coast of Florida and offers new information to better understand the conditions favorable for combined events as they are expected to increase as Earth continues to warm.

New Study Links Red Tides and Dead Zones off West Coast of Florida

Credit: NASA Earth Observatory images by Joshua Stevens, using Landsat data, acquired on July 14, 2021, by the Operational Land Imager (OLI) on Landsat 8.

MIAMI—A new study found that when red tides began in early summer and continued into the fall, low oxygen areas—or dead zones— were more likely to also occur. This study by scientists at the University of Miami Rosenstiel School of Marine and Atmospheric Science, and NOAA collaborators is the first study to link low oxygen—or hypoxia—to red tides across the west coast of Florida and offers new information to better understand the conditions favorable for combined events as they are expected to increase as Earth continues to warm.

Red tides are becoming a near annual occurrence off the west coast of Florida, which are caused by massive blooms of the algae Karenia brevis fueled in part by excess nutrients in the ocean. These algae blooms turn the ocean surface red and produce toxins that are harmful to marine mammals, sharks, seabirds and humans causing a range of issues from respiratory irritation, localized fish kills to large-scale massive mortalities to marine life. Hypoxic areas are typically referred to as ‘dead zones’.

“These events are so disruptive they are being incorporated in population assessments of some grouper species for use in fishery management decisions. During the 2005 red tide that also had hypoxia, it was estimated that about 30% of the red grouper population was killed,” said Brendan Turley, an assistant scientist at the UM Rosenstiel School and NOAA’s Cooperative Institute of Marine and Atmospheric Studies. “There are also concerns that the conditions favorable for combined red tide and hypoxia events will increase with climate change projections into the future.”

The study, conducted as part of NOAA’s Gulf of Mexico Integrated Ecosystem Assessment Program, examined nearly 20 years of oceanographic data that included temperature, salinity, and dissolved oxygen from the surface to the seafloor across the West Florida Shelf to determine the frequency of hypoxia and association with known red tides. The researchers found that hypoxia was present in five of the 16 years examined, three of which occurred concurrently with extreme red tides in 2005, 2014, and 2018. There is an ongoing effort to collaborate with commercial fishermen in Southwest Florida to monitor for red tide blooms and formation of hypoxia, which incorporates data collected during various NOAA surveys conducted in the region annually.

The study, titled “Relationships between blooms of Karenia brevis and hypoxia across the West Florida Shelf,” will appear in the May issue of the journal Harmful Algae, which is currently online. The study’s authors include: Brendan Turley from the UM NOAA Cooperative Institute for Marine and Atmospheric Studies; Mandy Karnauskas, Matthew Campbell, David Hanisko from NOAA’s Southeast Fisheries Science Center and Christopher Kelble from NOAA’s Atlantic Oceanographic and Meteorological Laboratory.

This research was carried out, in part, under the auspices of the Cooperative Institute for Marine and Atmospheric Studies and the National Oceanic and Atmospheric Administration, cooperative agreement # NA20OAR4320472.



Journal

Harmful Algae

DOI

10.1016/j.hal.2022.102223

Method of Research

Data/statistical analysis

Subject of Research

Not applicable

Article Title

Relationships between blooms of Karenia brevis and hypoxia across the West Florida Shelf

Article Publication Date

17-Feb-2022

COI Statement

none

Share12Tweet7Share2ShareShareShare1

Related Posts

Multiple growth forms of C. Albicans

Friendly fungi announce themselves to their hosts

May 17, 2022
Infrared cerebrospinal fluid tracer dynamically imaged with the LICOR Pearl IR imaging system allows assessment of tracer movement over the surface of the cerebral convexity as a surrogate measure of glymphatic exchange.

Infrared imaging to measure glymphatic function

May 17, 2022

Scientists use machine learning models to help identify long COVID patients

May 17, 2022

Scientists see signs of traumatic brain injury in headbutting muskox

May 17, 2022

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    42 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Zoology/Veterinary ScienceVirologyViolence/CriminalsWeaponryVaccineVaccinesUniversity of WashingtonVirusWeather/StormsUrogenital SystemVehiclesUrbanization

Recent Posts

  • Friendly fungi announce themselves to their hosts
  • Infrared imaging to measure glymphatic function
  • Scientists use machine learning models to help identify long COVID patients
  • Scientists see signs of traumatic brain injury in headbutting muskox
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....