• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, May 31, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

New method provides more precise information on types of leukaemia

Bioengineer by Bioengineer
February 17, 2022
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The team headed by Professor Huu Phuc Nguyen, Chair of Human Genetics at Ruhr-Universität Bochum (RUB), and Professor Roland Schroers, Head of the Department of Haematology, Oncology, Stem Cell/Immune Therapy at the University Hospital Knappschaftskrankenhaus, published their findings in the International Journal of Cancer on 22 January 2022.

Huu Phuc Nguyen (left) and Deepak Vangala

Credit: © RUB, Marquard

The team headed by Professor Huu Phuc Nguyen, Chair of Human Genetics at Ruhr-Universität Bochum (RUB), and Professor Roland Schroers, Head of the Department of Haematology, Oncology, Stem Cell/Immune Therapy at the University Hospital Knappschaftskrankenhaus, published their findings in the International Journal of Cancer on 22 January 2022.

Laser makes molecules visible

Optical genome mapping involves the extraction of very long DNA molecules, for example routinely collected blood samples or bone marrow material from patients. These long DNA molecules are labelled with dye molecules at more than half a million different positions in the entire human genome and are then moving through ultrathin nanochannels on a special chip. As the DNA molecules move through the nanochannels, a laser is used to make them visible and they are photographed using a fluorescence microscope. The images of the entire genome are then analysed using bioinformatic analyses. “The aim is to identify and interpret changes in genetic regions that are relevant for the development of cancer,” explains Dr. Wanda Gerding from the Bochum Department of Human Genetics.

Optical genome mapping thus facilitates genome-wide analysis of regions that are important for the classification and therapy of leukaemias using one methodology. Furthermore, it also allows the identification of new relevant genomic regions and new genes.

Reliable and additional results

In the current study, the team compared the methodology to current standard diagnostics in patients with acute myeloid leukaemia as well as myelodysplastic syndromes. The researchers showed that the results obtained by optical genome mapping methodology were concordant in 93 per cent of samples compared toa conventional methodology, the so-called cytogenetic karyogram, where whole chromosomes are vizaualized. In 67 per cent of the samples, it was even possible to obtain additional genetic information.

The methodology can thus not only detect structural changes in the genome more accurately, but also has the potential to become an important component of routine diagnostics for patients with leukaemia. “As a further benefit, genome research can provide data and new insights for further research work in the field of tumour biology,” says Wanda Gerding.

Cooperation partners

For the project, the Human Genetics Department at RUB, headed by Professor Huu Phuc Nguyen, cooperated with the Haematology, Oncology, Stem Cell and Immunotherapy Department of the Knappschaftskrankenhaus Bochum, headed by Professor. Roland Schroers, a member of the Centre for Haematooncological Diseases (ZHOE) at RUB, and Professor Peter Reimer from the Haematology, Internal Oncology and Stem Cell Transplantation Department at Evangelische Kliniken Essen-Mitte. The close scientific cooperation of both departments was ensured by Dr. Deepak Vangala, Dr. Wanda Gerding, Dr. Verena Nilius-Eliliwi (funded by the “Female Clinical Scientist” programme of the RUB Medical Faculty) and medical student Marco Tembrink (Human Genetics, medical doctoral scholarship holder from FoRUM, Medical Faculty of the RUB (FoRUM RUB). The project received a positive vote from the Ethics Committee of the RUB Medical Faculty (No. 20-7063).



Journal

International Journal of Cancer

DOI

10.1002/ijc.33942

Method of Research

Experimental study

Subject of Research

People

Article Title

Optical genome mapping reveals additional prognostic information compared to conventional cytogenetics in AML/MDS patients

Share12Tweet8Share2ShareShareShare2

Related Posts

Photo

Scientists identify how some angiogenic drugs used to treat cancer and heart disease cause vascular disease

May 30, 2023
Figure 1

Deconstructing the role of MALAT1 in MAPK-Signaling in melanoma

May 30, 2023

Pan-cancer T cell atlas reveals new details of tumor microenvironment

May 29, 2023

Protein-based nano-‘computer’ evolves in ability to influence cell behavior

May 26, 2023

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    39 shares
    Share 16 Tweet 10
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Groundbreaking study uncovers first evidence of long-term directionality in the origination of human mutation, fundamentally challenging Neo-Darwinism

    115 shares
    Share 46 Tweet 29
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Spinosaur Britain: Multiple different species likely roamed Cretaceous Britain

Metal shortage could put the brakes on electrification

Plants can distinguish when touch starts and stops

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In