• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, February 5, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New measurements quantifying qudits provide glimpse of quantum future

Bioengineer by Bioengineer
October 13, 2022
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Using existing experimental and computational resources, a multi-institutional team has developed an effective method for measuring high-dimensional qudits encoded in quantum frequency combs, which are a type of photon source, on a single optical chip.

Micro-ring resonator

Credit: Yun-Yi Pai/ORNL, U.S. Dept. of Energy

Using existing experimental and computational resources, a multi-institutional team has developed an effective method for measuring high-dimensional qudits encoded in quantum frequency combs, which are a type of photon source, on a single optical chip.

Although the word “qudit” might look like a typo, this lesser-known cousin of the qubit, or quantum bit, can carry more information and is more resistant to noise — both of which are key qualities needed to improve the performance of quantum networks, quantum key distribution systems and, eventually, the quantum internet.

Classical computer bits categorize data as ones or zeroes, whereas qubits can hold values of one, zero or both — simultaneously — owing to superposition, which is a phenomenon that allows multiple quantum states to exist at the same time. The “d” in qudit stands for the number of different levels or values that can be encoded on a photon. Traditional qubits have two levels, but adding more levels transforms them into qudits.

Recently, researchers from the U.S. Department of Energy’s Oak Ridge National Laboratory, Purdue University and the Swiss Federal Institute of Technology Lausanne, or EPFL, fully characterized an entangled pair of eight-level qudits, which formed a 64-dimensional quantum space — quadrupling the previous record for discrete frequency modes. These results were published in Nature Communications.

“We’ve always known that it’s possible to encode 10- or 20-level qudits or even higher using the colors of photons, or optical frequencies, but the problem is that measuring these particles is very difficult,” said Hsuan-Hao Lu, a postdoctoral research associate at ORNL. “That’s the value of this paper — we found an efficient and novel technique that is relatively easy to do on the experimental side.”

Qudits are even more difficult to measure when they are entangled, meaning they share nonclassical correlations regardless of the physical distance between them. Despite these challenges, frequency-bin pairs — two qudits in the form of photons that are entangled in their frequencies — are well suited to carrying quantum information because they can follow a prescribed path through optical fiber without being significantly modified by their environment.

“We combined state-of-the-art frequency-bin production with state-of-the-art light sources, and then used our technique to characterize high-dimensional qudit entanglement with a level of precision that hasn’t been shown before,” said Joseph Lukens, a Wigner Fellow and research scientist at ORNL.

The researchers began their experiments by shining a laser into a micro-ring resonator — a circular, on-chip device fabricated by EPFL and designed to generate nonclassical light. This powerful photon source takes up 1 square millimeter of space — comparable in size to the point of a sharpened pencil — and allowed the team to generate frequency-bin pairs in the form of quantum frequency combs.

Typically, qudit experiments require researchers to construct a type of quantum circuit called a quantum gate. But in this case, the team used an electro-optic phase modulator to mix different frequencies of light and a pulse shaper to modify the phase of these frequencies. These techniques are studied extensively at the Ultrafast Optics and Optical Fiber Communications Laboratory led by Andrew Weiner at Purdue, where Lu studied before joining ORNL.

These optical devices are commonplace in the telecommunications industry, and the researchers performed these operations at random to capture many different frequency correlations. According to Lu, this process is like rolling a pair of six-sided dice and recording how many times each combination of numbers appears — but now the dice are entangled with each other.

“This technique, which involves phase modulators and pulse shapers, is heavily pursued in the classical context for ultrafast and broadband photonic signal processing and has been extended to the quantum avenue of frequency qudits,” Weiner said.

To work backward and infer which quantum states produced frequency correlations ideal for qudit applications, the researchers developed a data analysis tool based on a statistical method called Bayesian inference and ran computer simulations at ORNL. This accomplishment builds on the team’s previous work focused on performing Bayesian analyses and reconstructing quantum states.

The researchers are now fine-tuning their measurement method to prepare for a series of experiments. By sending signals through optical fiber, they aim to test quantum communication protocols such as teleportation, which is a method of transporting quantum information, and entanglement swapping, which is the process of entangling two previously unrelated particles.

Karthik Myilswamy, a graduate student at Purdue, plans to bring the micro-ring resonator to ORNL, which will enable the team to test these capabilities on the laboratory’s quantum local area network.

“Now that we have a method to efficiently characterize entangled frequency qudits, we can perform other application-oriented experiments,” Myilswamy said.

This research was supported by DOE’s Advanced Scientific Computing Research program and the Early Career Research program, the National Science Foundation, the Air Force Office of Scientific Research and the Swiss National Science Foundation.

UT-Battelle manages ORNL for DOE’s Office of Science, the single largest supporter of basic research in the physical sciences in the United States. DOE’s Office of Science is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.



Journal

Nature Communications

DOI

10.1038/s41467-022-31639-z

Article Title

Bayesian tomography of high-dimensional on-chip biphoton frequency combs with randomized measurements

Article Publication Date

27-Jul-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

World Cancer Day

Health Equity Report Card pilot project to help close the care gap highlighted on World Cancer Day

February 4, 2023
AC hum noise-based detection using HumTouch.

Tech that turns household surfaces into touch sensors is a touch closer to application

February 4, 2023

Preference for naturally talented over hard workers emerges in childhood, HKUST researchers find

February 4, 2023

Black South Africans report higher life satisfaction and are at less risk for depression post-migration, MU study finds

February 3, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    65 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Health Equity Report Card pilot project to help close the care gap highlighted on World Cancer Day

Tech that turns household surfaces into touch sensors is a touch closer to application

Preference for naturally talented over hard workers emerges in childhood, HKUST researchers find

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In