• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, July 1, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New light on organic solar cells

Bioengineer by Bioengineer
May 17, 2022
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Efficient and environmentally friendly solar cells are required for a transition to a fossil-free energy supply. Researchers at Linköping University have mapped how energy flows in organic solar cells, something that previously had been unknown. The results, which can contribute to more efficient solar cells, are published in Nature Communications.

Xian'e Li

Credit: Thor Balkhed

Efficient and environmentally friendly solar cells are required for a transition to a fossil-free energy supply. Researchers at Linköping University have mapped how energy flows in organic solar cells, something that previously had been unknown. The results, which can contribute to more efficient solar cells, are published in Nature Communications.

“To enable the full potential of organic solar cells to be exploited, there is a need for a clear picture of how they work. We have now obtained that picture. This provides a better understanding of how to create new efficient and sustainable solar cell materials,” says Mats Fahlman, a professor at the Laboratory of Organic Electronics at Linköping University.

Today, solar energy meets around two percent of the world’s energy needs. But its potential is far in excess of that. The energy contained in the sun’s rays is more than enough to meet our needs today and in the future. Solar cells that are cheap and environmentally friendly to manufacture are needed to be successful. In addition, they need to be efficient at absorbing a large proportion of the sun’s rays and converting to electrical energy.

Organic solar cells based on organic semiconductors are increasingly emerging as a sustainable option. But until just a few years ago they could not stand comparison with traditional silicon-based solar cells for efficiency. This was due to energy loss in charge separation, which was thought to be unavoidable. 

But in 2016, a research team at Linköping University together with colleagues in Hong Kong were able to show that it was possible to avoid the energy loss using different donor-acceptor materials that help the electron to escape from its hole more easily. Energy loss then decreased and efficiency increased. The problem was that no one knew exactly how it happened. It was possible to see that it worked, but not why.

Some of the same research team at Linköping University have now solved the mystery that had led to disagreement in this field of research. In a new study published in Nature Communications, the researchers have identified what energy levels are required to minimise energy losses.

“To find out how the energy flows, we laid nanometre-thick organic semiconduction films in several layers one on top of the other, rather like a strawberry and cream cake. After that we measured the energy required to separate the electrons from their holes in each individual layer,” says Xian’e Li, a PhD student at Linköping University and principal author of the scientific article.

The researchers were then able to map the mechanism behind the energy-efficient charge separation. This systematic mapping points a new way forward for the development of organic solar cells.

The study is funded by the Swedish Research Council, the Swedish Energy Agency and the Swedish Government’s strategic initiative Advanced Functional Materials at Linköping University.

Footnote: The organic solar cells in the study are of a type where the electron acceptor is made of a material other than fullerene (a form of carbon), which previously was the most common material used. Non-fullerene-based organic cells become more stable and are capable of absorbing a greater proportion of the sun’s rays for conversion to energy.



Journal

Nature Communications

DOI

10.1038/s41467-022-29702-w

Article Title

Mapping the energy level alignment at donor/acceptor interfaces in non-fullerene organic solar cells

Article Publication Date

19-Apr-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Spike protein

Emerging Omicron subvariants BA.2.12.1, BA.4 and BA.5 are inhibited less efficiently by antibodies

July 1, 2022
Edward Cachay, University of California San Diego

Mathematical model helps predict anal cancer risk in persons with HIV infection

July 1, 2022

Black nursing home residents, those under age 65 more likely to have repeat transfers to hospital, MU study finds

July 1, 2022

Monkeypox virus on surfaces: no proof that contact can cause infection

July 1, 2022

POPULAR NEWS

  • Pacific whiting

    Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    37 shares
    Share 15 Tweet 9
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers

    35 shares
    Share 14 Tweet 9
  • University of Miami Rosenstiel School selected for National ‘Reefense’ Initiative focusing on Florida and the Caribbean

    35 shares
    Share 14 Tweet 9
  • Mapping the ‘energy fingerprints’ of lung cancer leads to fundamental treatment rethink

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VirusVehiclesUniversity of WashingtonUrbanizationUrogenital SystemVaccinesVirologyZoology/Veterinary ScienceViolence/CriminalsWeaponryVaccineWeather/Storms

Recent Posts

  • Emerging Omicron subvariants BA.2.12.1, BA.4 and BA.5 are inhibited less efficiently by antibodies
  • Mathematical model helps predict anal cancer risk in persons with HIV infection
  • Black nursing home residents, those under age 65 more likely to have repeat transfers to hospital, MU study finds
  • Monkeypox virus on surfaces: no proof that contact can cause infection
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....