• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, October 2, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New insight for stabilizing halide perovskite via thiocyanate substitution

Bioengineer by Bioengineer
August 31, 2023
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

α-FAPbI3, a promising solar cell material with a cubic perovskite structure that is metastable at room temperature, can be stabilized by introducing a pseudo-halide ion like thiocyanate (SCN–) into its structure, demonstrated by Tokyo Tech researchers in a new study. Their finding provides new insights into the stabilization of the α-phase via grain boundary and pseudo-halide engineering.

Stabilizing Cubic Perovskite α-FAPbl3 via Thiocyanate Substitution

Credit: Associate Professor Takafumi Yamamoto
Tokyo Institute of Technology

α-FAPbI3, a promising solar cell material with a cubic perovskite structure that is metastable at room temperature, can be stabilized by introducing a pseudo-halide ion like thiocyanate (SCN–) into its structure, demonstrated by Tokyo Tech researchers in a new study. Their finding provides new insights into the stabilization of the α-phase via grain boundary and pseudo-halide engineering.

The light we receive every day from the Sun, if harnessed efficiently, can help us tackle the ongoing global energy crisis as well as our concern with climate change. Materials with good photophysical properties, i.e., light absorption, are used for designing solar cells, which convert sunlight into electrical energy. One such material that has recently gained momentum on this front is α-formamidinium lead iodide or α-FAPbI3 (where FA+ = CH(NH2)2+), a crystalline solid with a cubic perovskite structure.

Solar cells made of α-FAPbI3 exhibit a remarkable 25.8% conversion efficiency and an energy gap of 1.48 eV, specifications that are highly desirable for real-life applications. Unfortunately, α-FAPbI3 is metastable at room temperature and undergoes a phase transition to δ-FAPbI3 when triggered by water or light. The energy gap of δ-FAPbI3 is much larger than the ideal value for solar cell applications, making the preservation of the α-phase crucial for practical purposes.

To overcome this problem, a team of researchers led by Associate Professor Takafumi Yamamoto from Tokyo Institute of Technology (Tokyo Tech) has recently presented a new strategy for stabilizing α-FAPbI3 in a work published in the Journal of American Chemical Society.

The team focuses on the stabilization mechanism of α-FAPbI3 by introducing a pseudo-halide anion, thiocyanate (SCN–). “Previous studies have shown that partial replacement of surface anions of FAPbI3 from iodide (I–) to SCN– ion stabilizes the α-phase. However, it is still unclear how SCN– ions incorporate themselves within perovskite lattice and increase the interfacial stability,” explains Dr. Yamamoto.

Single crystal and powder samples of the thiocyanate-stabilized pseudo-cubic perovskite were prepared by the team for the first time. Structural analysis revealed that it has a √5-fold superstructure of cubic perovskite with ordered columnar defects, constituting the α’-phase. The new material was found to be thermodynamically stable in a dry atmosphere at room temperature and exhibited an energy band gap of 1.91 eV.

The team found that the presence of the α’-phase in a sample containing the δ-phase promoted the δ-to-α phase transformation, reducing the transition temperature by over 100 K. They pointed out that the defect-ordered patterns in the α’-phase, that can form a coincidence-site lattice at the twinned boundary, lead to the stabilization of the α-phase, either through a reduction in its nucleation energy or by thermodynamic stabilization via epitaxy.

These insights gained by the researchers could encourage further investigation into the effect of vacancy ordering and defect tolerance on the stability of halide perovskites. “This work shows that α-FAPbI3 can be stabilized through pseudo-halide and grain boundary engineering, which might prove beneficial to scientists trying to develop new thermodynamically stable solar cell materials with ideal band gaps and excellent conversion efficiency,” concludes a hopeful Dr. Yamamoto.

Indeed, we too hope that the present technology will pave the way for a solar energy economy!

###

About Tokyo Institute of Technology

Tokyo Tech stands at the forefront of research and higher education as the leading university for science and technology in Japan. Tokyo Tech researchers excel in fields ranging from materials science to biology, computer science, and physics. Founded in 1881, Tokyo Tech hosts over 10,000 undergraduate and graduate students per year, who develop into scientific leaders and some of the most sought-after engineers in industry. Embodying the Japanese philosophy of “monotsukuri,” meaning “technical ingenuity and innovation,” the Tokyo Tech community strives to contribute to society through high-impact research.

https://www.titech.ac.jp/english/



Journal

Journal of the American Chemical Society

DOI

10.1021/jacs.3c05390

Method of Research

Experimental study

Subject of Research

Not applicable

Article Publication Date

31-Aug-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Figure 1: A case of emissions and transport of PM2.5 in Punjab to Delhi NCR in November 2-4, 2022 due to CRB.

Dense measurement network revealed high level of PM2.5 in Punjab due to crop residue burning and its transport to Haryana and Delhi NCR

October 2, 2023
A set of 33 droplets fabricated to create “OMU” using the optical vortex laser-induced printing technique

Next-generation printing: precise and direct, using optical vortices

October 2, 2023

Researchers studied thousands of fertility attempts hoping to improve IVF

October 2, 2023

Synergistic work of cations in anion exchange membranes for OH- transport in fuel cells

September 30, 2023

POPULAR NEWS

  • blank

    Microbe Computers

    59 shares
    Share 24 Tweet 15
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    35 shares
    Share 14 Tweet 9
  • Fossil spines reveal deep sea’s past

    34 shares
    Share 14 Tweet 9
  • Scientists go ‘back to the future,’ create flies with ancient genes to study evolution

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Dense measurement network revealed high level of PM2.5 in Punjab due to crop residue burning and its transport to Haryana and Delhi NCR

Next-generation printing: precise and direct, using optical vortices

Researchers studied thousands of fertility attempts hoping to improve IVF

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 56 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In