• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, March 27, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

New cell death mechanism could offer novel cancer treatment strategies

Bioengineer by Bioengineer
February 6, 2023
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A study from researchers at The University of Texas MD Anderson Cancer Center, published today in Nature Cell Biology, details a previously unexplained type of cell death called disulfidptosis that could open the door for novel cancer therapeutic strategies.  

Boyi Gan, Ph.D.

Credit: The University of Texas MD Anderson Cancer center

A study from researchers at The University of Texas MD Anderson Cancer Center, published today in Nature Cell Biology, details a previously unexplained type of cell death called disulfidptosis that could open the door for novel cancer therapeutic strategies.  

As described in the study, disulfidptosis is triggered when cells with high levels of the SLC7A11 protein are subjected to glucose starvation. In preclinical models, treatment with glucose inhibitors induced disulfidptosis in cancer cells with high SLC7A11 expression, effectively suppressing tumor growth without significant toxicity in normal tissues. 

The study was led by Boyi Gan, Ph.D., and Junjie Chen, Ph.D., both professors of Experimental Radiation Oncology.  

“Cancer cells rely on SLC7A11 to import cystine for maintaining redox balance and for cell survival. However, this also exposes an Achilles heel in SLC7A11-high cancer cells because these cells are dependent on glucose to resolve their disulfide-overloading issue,” Gan said. “Starving these cells of glucose can overwhelm them with toxic disulfide molecules, resulting in rapid cell death.” 

Many cancers, such as lung cancer and kidney cancer, have an overexpression of SLC7A11, which codes for the cystine transporter. In a 2020 paper, Gan’s team showed certain cancer cells might be susceptible to treatment with glucose transporter inhibitors due to their high expression of SLC7A11 and the resulting “addiction” to extracellular glucose.  

The SLC7A11 protein imports cystine, an important amino acid that can contribute to tumor growth, but elevated levels of cystine and other disulfide molecules can be toxic. To regulate this balance, cells are forced to use the molecule NADPH to quickly convert toxic disulfides into other non-toxic molecules. NADPH is mainly supplied from glucose, so cutting off the glucose supply can lead to an accumulation of disulfide molecules and cell death.  

The precise mechanism behind this process was not previously understood. According to Gan, this new study sheds light on the topic by demonstrating a previously uncharacterized form of cell death. 

One of the best-known cell death mechanisms is apoptosis, which can be triggered either internally or externally, resulting in the activation of caspases which kill the cell by chopping up key proteins. Another highly studied cell death pathway in recent years is ferroptosis, which is caused by the accumulation of lipid peroxides.  

Disulfidptosis is different from these other cell death mechanisms because it relates to the actin cytoskeleton, a cell structure vital for maintaining cell shape and survival. The actin cytoskeleton is composed of actin filaments, which give cells their overall shape and structure.  

This new study revealed that, in glucose-starved SLC7A11-high cancer cells, the large number of accumulated disulfide molecules cause aberrant disulfide bonding among actin cytoskeleton proteins, interfering with their organization and ultimately leading to actin network collapse and cell death. 

Many cancer therapies are designed to kill cancer cells via apoptosis. However, many cancer cells find ways to escape from therapy-induced apoptosis, leading to therapy resistance and disease relapse. These findings suggest that targeting disulfidptosis merits further study as a cancer treatment approach. 

“This important finding will hopefully inspire disulfidptosis-inducing treatments for cancers that have evaded other therapies and are resistant to apoptosis,” Gan said. “Because SLC7A11 is highly expressed in many cancers, there might be a therapeutic window to inhibit glucose transporters and induce disulfidptosis in these cells while leaving normal cells unaffected.” 

According to Gan, the next direction of this research includes investigating how disulfidptosis can be initiated in other conditions and what additional pathways play a role in triggering it. Further understanding of these mechanisms could provide additional targets for cancer therapies.  

This research was supported by the Institutional Research Fund and Bridge Fund from MD Anderson, the Emerson Collective, and the National Institutes of Health (R01CA181196, R01CA244144, R01CA247992, R01DK107733 and R35GM130119). A full list of authors and their disclosures can be found in the full paper here. 



Journal

Nature Cell Biology

DOI

10.1038/s41556-023-01091-2

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis

Article Publication Date

6-Feb-2023

Share13Tweet8Share2ShareShareShare2

Related Posts

Senior Author

Beneficial bacteria in the infant gut uses nitrogen from breast milk to support baby’s health

March 27, 2023
Long-read genomic sequencing

The ‘long read’ for cancer

March 27, 2023

Finger-prick test developed for ‘trich’ a common, undiagnosed STI

March 27, 2023

Cancer cells with thicker glycocalyx barrier are better at evading immune cells

March 26, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    66 shares
    Share 26 Tweet 17
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    43 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

JNM explores potential applications for ChatGPT in nuclear medicine and molecular imaging

Beneficial bacteria in the infant gut uses nitrogen from breast milk to support baby’s health

Rare beetle, rediscovered after 55 years, named in honor of Jerry Brown

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In