• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, January 29, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New bacterial therapy approach to treat lung cancer

Bioengineer by Bioengineer
December 23, 2022
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New York, NY—December 23, 2022—Lung cancer is the deadliest cancer in the United States and around the world. Many of the currently available therapies have been ineffective, leaving patients with very few options. A promising new strategy to treat cancer has been bacterial therapy, but while this treatment modality has quickly progressed from laboratory experiments to clinical trials in the last five years, the most effective treatment for certain types of cancers may be in combination with other drugs. 

Figure 1

Credit: Dhruba Deb/Columbia Engineering

New York, NY—December 23, 2022—Lung cancer is the deadliest cancer in the United States and around the world. Many of the currently available therapies have been ineffective, leaving patients with very few options. A promising new strategy to treat cancer has been bacterial therapy, but while this treatment modality has quickly progressed from laboratory experiments to clinical trials in the last five years, the most effective treatment for certain types of cancers may be in combination with other drugs. 

Columbia Engineering researchers report that they have developed a preclinical evaluation pipeline for characterization of bacterial therapies in lung cancer models. Their new study, published December 13, 2022, by Scientific Reports, combines bacterial therapies with other modalities of treatment to improve treatment efficacy without any additional toxicity. This new approach was able to rapidly characterize bacterial therapies and successfully integrate them with current targeted therapies for lung cancer.

“We envision a fast and selective expansion of our pipeline to improve treatment efficacy and safety for solid tumors,” said first author Dhruba Deb, an associate research scientist who studies the effect of bacterial toxins on lung cancer in Professor Tal Danino’s lab in Biomedical Engineering, “As someone who has lost loved ones to cancer, I would like to see this strategy move from the bench to bedside in the future.”

The team used RNA sequencing to discover how cancer cells were responding to bacteria at the cellular and molecular levels. They built a hypothesis on which molecular pathways of cancer cells were helping the cells to be resistant to the bacteria therapy. To test their hypothesis, the researchers blocked these pathways with current cancer drugs and showed that combining the drugs with bacterial toxins is more effective in eliminating lung cancer cells. They validated the combination of bacteria therapy with an AKT-inhibitor as an example in mouse models of lung cancer.

“This new study describes an exciting drug development pipeline that has been previously unexplored in lung cancer – the use of toxins derived from bacteria,” said Upal Basu Roy, executive director of research, LUNGevity Foundation, USA. “The preclinical data presented in the manuscript provides a strong rationale for continued research in this area, thereby opening up the possibility of new treatment options for patients diagnosed with this lethal disease.”

Deb plans to expand his strategy to larger studies in preclinical models of difficult-to-treat lung cancers and collaborate with clinicians to make a push for the clinical translation. 

###

About the Study

Journal: Scientific Reports

The study is titled: “Design of combination therapy for engineered bacterial therapeutics in non-small cell lung cancer.”

Authors are: Dhruba Deb 1, Yangfan Wu 1, Courtney Coker 1, Tetsuhiro Harimoto 1, Ruoqi Huang 1 & Tal Danino 1,2,3

1 Department of Biomedical Engineering, Columbia Engineering
2 Herbert Irving Comprehensive Cancer Center, Columbia University
3 Data Science Institute, Columbia University

The study was funded by the Pershing Square Foundation (PSF) PSSCRA CU20-0730 (T.D.), Cancer Research Institute (CRI) CRI 3446 (T.D.) and NIH-NIBIB RO1 EB029750 (T.D.). 

The authors declare no financial or other conflicts of interest.

Media contact:
Holly Evarts, Director of Strategic Communications and Media Relations
347-453-7408 (c) | 212-854-3206 (o) | [email protected]

###

LINKS:

Paper: https://www.nature.com/articles/s41598-022-26105-1   

DOI: 10. 1038/ s41598- 022- 26105-1  

 



Journal

Scientific Reports

DOI

10.1038/s41598-022-26105-1

Article Title

Design of combination therapy for engineered bacterial therapeutics in non-small cell lung cancer

Article Publication Date

13-Dec-2022

COI Statement

The authors declare no financial or other conflicts of interest.

Share12Tweet8Share2ShareShareShare2

Related Posts

World-first guidelines created to help prevent heart complications in children during cancer treatment

World-first guidelines created to help prevent heart complications in children during cancer treatment

January 29, 2023
Schematic of solar wind charge exchange events.

Simulations reproduce complex fluctuations in soft X-ray signal detected by satellites

January 28, 2023

Measles virus ‘cooperates’ with itself to cause fatal encephalitis

January 27, 2023

A new Assay screening method shows therapeutic promise for treating auto-immune disease

January 27, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    64 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

World-first guidelines created to help prevent heart complications in children during cancer treatment

Simulations reproduce complex fluctuations in soft X-ray signal detected by satellites

Measles virus ‘cooperates’ with itself to cause fatal encephalitis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In