• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, November 30, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New AI noise-canceling headphone technology lets wearers pick which sounds they hear

Bioengineer by Bioengineer
November 9, 2023
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Most anyone who’s used noise-canceling headphones knows that hearing the right noise at the right time can be vital. Someone might want to erase car horns when working indoors, but not when walking along busy streets. Yet people can’t choose what sounds their headphones cancel.

SemanticHearing

Credit: University of Washington

Most anyone who’s used noise-canceling headphones knows that hearing the right noise at the right time can be vital. Someone might want to erase car horns when working indoors, but not when walking along busy streets. Yet people can’t choose what sounds their headphones cancel.

Now, a team led by researchers at the University of Washington has developed deep-learning algorithms that let users pick which sounds filter through their headphones in real time. The team is calling the system “semantic hearing.” Headphones stream captured audio to a connected smartphone, which cancels all environmental sounds. Either through voice commands or a smartphone app, headphone wearers can select which sounds they want to include from 20 classes, such as sirens, baby cries, speech, vacuum cleaners and bird chirps. Only the selected sounds will be played through the headphones.

The team presented its findings Nov. 1 at UIST ’23 in San Francisco. In the future, the researchers plan to release a commercial version of the system.

“Understanding what a bird sounds like and extracting it from all other sounds in an environment requires real-time intelligence that today’s noise canceling headphones haven’t achieved,” said senior author Shyam Gollakota, a UW professor in the Paul G. Allen School of Computer Science & Engineering. “The challenge is that the sounds headphone wearers hear need to sync with their visual senses. You can’t be hearing someone’s voice two seconds after they talk to you. This means the neural algorithms must process sounds in under a hundredth of a second.”

Because of this time crunch, the semantic hearing system must process sounds on a device such as a connected smartphone, instead of on more robust cloud servers. Additionally, because sounds from different directions arrive in people’s ears at different times, the system must preserve these delays and other spatial cues so people can still meaningfully perceive sounds in their environment.

Tested in environments such as offices, streets and parks, the system was able to extract sirens, bird chirps, alarms and other target sounds, while removing all other real-world noise. When 22 participants rated the system’s audio output for the target sound, they said that on average the quality improved compared to the original recording.

In some cases, the system struggled to distinguish between sounds that share many properties, such as vocal music and human speech. The researchers note that training the models on more real-world data might improve these outcomes.

Additional co-authors on the paper were Bandhav Veluri and Malek Itani, both UW doctoral students in the Allen School; Justin Chan, who completed this research as a doctoral student in the Allen School and is now at Carnegie Mellon University; and Takuya Yoshioka, director of research at AssemblyAI.

For more information, contact [email protected].



DOI

10.1145/3586183.3606779

Article Title

Semantic Hearing: Programming Acoustic Scenes with Binaural Hearables

Article Publication Date

29-Oct-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Two applications of macrocyclic small molecules in cancer therapy

Applications of macrocyclic molecules in cancer therapy: Target cancer development or overcome drug resistance

November 30, 2023
First undergraduate degree in cellular agriculture

What is Cellular Agriculture? The world population is expected to reach 9.7 billion by 2050. With it will come a doubling in the amount of animal protein we consume.

November 30, 2023

Rise of microplastics discovered in placentas of Hawaiʻi mothers

November 30, 2023

Scientists create framework to guide development and assessment of urban climate action plans

November 30, 2023

POPULAR NEWS

  • Figure 1

    Understanding rapid tendon regeneration in newts may one day help human athletes

    57 shares
    Share 23 Tweet 14
  • Study finds increasingly popular oral nicotine pouches do little to curb smokers’ cravings

    35 shares
    Share 14 Tweet 9
  • UMass Amherst receives $2.5 million from Howard Hughes Medical Institute to reshape STEM education

    34 shares
    Share 14 Tweet 9
  • SMART researchers pioneer novel microfluidic method to optimise bone marrow stem cell extraction for advanced cell therapies

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Applications of macrocyclic molecules in cancer therapy: Target cancer development or overcome drug resistance

What is Cellular Agriculture? The world population is expected to reach 9.7 billion by 2050. With it will come a doubling in the amount of animal protein we consume.

Rise of microplastics discovered in placentas of Hawaiʻi mothers

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 58 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In