• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, June 7, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

NASA data could lead to more accurate weather forecasts

Bioengineer by Bioengineer
May 24, 2023
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A University of Texas at Arlington civil engineering researcher will use a NASA grant to help forecasters better predict extreme weather events using a variety of existing NASA data sources.

Yu Zhang

Credit: UT Arlington

A University of Texas at Arlington civil engineering researcher will use a NASA grant to help forecasters better predict extreme weather events using a variety of existing NASA data sources.

Yu Zhang, associate professor in the Department of Civil Engineering, said the $638,000 grant will use ocean circulation data, atmospheric conditions and current weather information to make longer-range forecasting more reliable. Having a more accurate forecast could help officials make better decisions about the state’s water resources—for example, knowing when to release water from reservoirs.

“Using NASA data, we want to increase the accuracy of forecasts for extreme wet and dry conditions,” Zhang said. “It takes two to three weeks for water released from reservoirs to travel from North Texas to the coast. Reservoir operators have to take that into account when releasing water up here because it has an impact south of us. We will determine if the data we have available can help us predict those events. We have to have a better forecast lead time.”

The project is titled “Improving Subseasonal to Seasonal (S2S) Hydrometeorological Predictions for the State of Texas Through Synergistic Infusion of Remotely Sensed SST (Simulation and Software Technology) and Land Surface Variables to a Coupled Modeling System.”

S2S refers to a range of forecast lead times associated with weather and climate forecasts. Currently, there is a gap in the capabilities of operational forecast systems that limits the accuracy of forecasts at the S2S range. A consortium of federal agencies, including the National Oceanic and Atmospheric Administration, has empowered NASA to place a high priority on improving S2S forecasts to address existing and emerging needs in various economic sectors, including water supply. 

Typical weather forecasting spans 14-15 days, while climate forecasting generally is for the next three to six months under average conditions. Existing NASA data could help improve S2S forecasts.

“NASA wants to see how the data collected through existing missions can be used to improve forecasts to guide their future missions,” Zhang said.

He believes the new information his project produces could help determine the potential impacts of land surface temperature and soil moisture in the spring on the emergence and intensity of summertime droughts.

“Over the last 10 years, we’ve had more extreme weather events, and so we should be able to harness all that data to understand the contributions from land and ocean to the occurrence of these events,” Zhang said.

Melanie Sattler, interim chair and professor in the Department of Civil Engineering, said Zhang’s work is needed in Texas because the state’s weather is so varied.

“Finding out how NASA data can be used to improve forecasts will inform the development of future weather models whose forecasts will contribute to saving lives and property,” she said.



Share12Tweet8Share2ShareShareShare2

Related Posts

Colusa National Wildlife Refuge

Knowledge coproduction: Working together to solve a complex conservation problem

June 6, 2023
Manipulating topological edge states for optical channel switcher.

Revolutionizing optical control with topological edge states

June 6, 2023

Researchers dig deep to unveil causes of decline for North America’s smallest falcon

June 6, 2023

Does multimorbidity impact chronic disease treatment?

June 6, 2023

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    41 shares
    Share 16 Tweet 10
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Deep sea surveys detect over five thousand new species in future mining hotspot

    35 shares
    Share 14 Tweet 9
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Knowledge coproduction: Working together to solve a complex conservation problem

Revolutionizing optical control with topological edge states

Researchers dig deep to unveil causes of decline for North America’s smallest falcon

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In