• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, February 4, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Metabolic hack makes ocean algae more resilient to 21st century climate change

Bioengineer by Bioengineer
December 21, 2022
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A study published in Science Advances by an international team of scientists provides clear evidence that marine phytoplankton are much more resilient to future climate change than previously thought.

Fig. 1

Credit: Institute for Basic Science

A study published in Science Advances by an international team of scientists provides clear evidence that marine phytoplankton are much more resilient to future climate change than previously thought.

Combining data from the long-term Hawai’i Ocean Time-series program with new climate model simulations conducted on one of South Korea’s fastest supercomputers, the scientists revealed that a mechanism, known as nutrient uptake plasticity, allows marine algae to adapt and cope with nutrient-poor ocean conditions expected to occur over the next decades in response to global warming of the upper ocean.

Phytoplankton are tiny algae (Fig. 1) which drift at the ocean’s surface and form the basis of the marine food web. While photosynthesizing, these algae absorb nutrients (e.g., phosphate, nitrate), take up dissolved carbon dioxide and release oxygen, which makes up for about 50% of the oxygen that we breathe. Knowing how marine algae will respond to global warming and to associated decline of nutrients in upper ocean waters is therefore crucial for understanding the long-term habitability of our planet.

How the annual phytoplankton production rate will change globally over the next 80 years remains highly uncertain. The latest report of the Intergovernmental Panel on Climate Change (IPCC) states an uncertainty of -20% to +20%, which implies an uncertainty as to whether phytoplankton will increase or decrease in future.

Global warming affects the upper layers of the ocean more than the deeper layers. Warmer water is lighter and hence the upper ocean will become more stratified in future, which reduces mixing of nutrients from the subsurface into the sun-lit layer, where phytoplankton reside. Earlier studies suggested that the expected future depletion of nutrients near the surface would lead to a substantial reduction of ocean’s phytoplankton production with widespread and potentially catastrophic effects on both marine ecosystems and climate.

But according to a new study in Science Advances, this may not happen. New analyses of the upper ocean phytoplankton data from Hawai’i Ocean Time-series program shows that productivity can be sustained, even in very nutrient-depleted conditions. “Under such conditions individual phytoplankton cells can substitute phosphorus with sulfur. On a community level, one might see further shifts towards taxa that require less phosphorus”, says David Karl, a coauthor of the study, Professor in Oceanography at the University of Hawai’i and co-founder of the Hawai’i Ocean Time-series Study program, to illustrate the concept of phytoplankton plasticity. Further supporting evidence for plasticity comes from the fact that in subtropical regions, where nutrient concentrations in the surface waters are low, algae take up less phosphorus per amount of carbon stored in their cells, as compared to the global mean.

To study how this unique metabolic “hack” will impact global ocean productivity over the next few decades, the team ran a series of climate model simulations with the Community Earth System model (version 2, CESM2) on their supercomputer Aleph. By turning off the phytoplankton plasticity in their model, the authors were able to qualitatively reproduce previous model results of a decline in global productivity by about 8%. However, when turning on the plasticity parameter in their model, in a way that captures the observations near Hawai’i for the past 3 decades, the computer simulation reveals an increase in global productivity of up to 5% until the end of this century. “Regionally, however, these future productivity differences can be much higher, reaching up to 200% in subtropical regions,” says Dr. Eun Young Kwon, first author of the study and a researcher at the IBS Center for Climate Physics at Pusan National University, South Korea. With this extra productivity boost, the ocean can also take up more carbon dioxide from the atmosphere and eventually sequester it below the ocean’s surface.

Inspired by the results of their sensitivity computer model simulations, the authors then looked at 10 other climate models, whose data were used in the recent 6th Assessment Report of the IPCC. The results confirmed the author’s initial conclusions. “Models without plasticity tend to project overall declining primary production for the 21st century, whereas those that account for the capability of phytoplankton to adapt to low nutrient conditions show on average increasing global productivity” says Dr. M.G. Sreeush, co-corresponding author of the study and a postdoctoral fellow at the IBS Center for Climate Physics.

“Even though our study demonstrates the importance of biological buffering of global-scale ecological changes, this does not imply that phytoplankton are immune to human induced climate change. For instance, worsening ocean acidification will reduce the calcification rates of certain types of phytoplankton, which can lead to large-scale shifts in ecosystems.” warns Dr. Eun Young Kwon. These factors are neither well understood nor represented yet in climate models.

“Future Earth system models need to use improved observationally-based representations of how phytoplankton respond to multiple stressors, including warming and ocean acidification. This is necessary to predict the future of marine life on our planet” says Prof. Axel Timmermann, a coauthor of this study and director of the IBS Center for Climate Physics.



Journal

Science Advances

DOI

10.1126/sciadv.add2475

Article Title

Nutrient uptake plasticity in phytoplankton sustains future ocean net primary production

Article Publication Date

21-Dec-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Children think more highly of the naturally talented over hard workers, according to a research by HKUST.

Preference for naturally talented over hard workers emerges in childhood, HKUST researchers find

February 4, 2023
road

Black South Africans report higher life satisfaction and are at less risk for depression post-migration, MU study finds

February 3, 2023

New treatment approach for prostate cancer could stop resistance in its tracks

February 3, 2023

Living in a violent setting can result in a shorter, but also a more unpredictable lifespan, according to new research from NYU Abu Dhabi social scientists

February 3, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    65 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Preference for naturally talented over hard workers emerges in childhood, HKUST researchers find

Black South Africans report higher life satisfaction and are at less risk for depression post-migration, MU study finds

New treatment approach for prostate cancer could stop resistance in its tracks

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In