• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, May 20, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Meet the forest microbes that can survive megafires

Bioengineer by Bioengineer
April 25, 2022
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New UC Riverside research shows fungi and bacteria able to survive redwood tanoak forest megafires are microbial “cousins” that often increase in abundance after feeling the flames. 

Lyophyllum atratum

Credit: Dylan Enright/UCR

New UC Riverside research shows fungi and bacteria able to survive redwood tanoak forest megafires are microbial “cousins” that often increase in abundance after feeling the flames. 

Fires of unprecedented size and intensity, called megafires, are becoming increasingly common. In the West, climate change is causing rising temperatures and earlier snow melt, extending the dry season when forests are most vulnerable to burning. 

Though some ecosystems are adapted for less intense fires, little is known about how plants or their associated soil microbiomes respond to megafires, particularly in California’s charismatic redwood tanoak forests. 

“It’s not likely plants can recover from megafires without beneficial fungi that supply roots with nutrients, or bacteria that transform extra carbon and nitrogen in post-fire soil,” said Sydney Glassman, UCR mycologist and lead study author. “Understanding the microbes is key to any restoration effort.”

The UCR team is contributing to this understanding with a paper in the journal Molecular Ecology. 

In addition to examining megafire effects on redwood tanoak forest microbes, the study is unusual for another reason. Soil samples were pulled from the same plots of land both before and immediately after the 2016 Soberanes fire in Monterey County. 

“To get this kind of data, a researcher would almost have to burn the plot themselves. It’s so tough to predict exactly where there will be a burn,” Glassman said. 

The team was not surprised to find that the Soberanes fire had a massive impact on bacterial and fungal communities, with as much as a 70% decline in the number of microbe species. They were surprised that some yeast and bacteria not only survived the fire but increased in abundance. 

Bacteria that increased included Actinobacteria, which are responsible for helping plant material decompose. The team also found an increase in Firmicutes, known for promoting plant growth, helping control plant pathogens, and remediating heavy metals in soil. 

In the fungal category, the team found a massive increase in heat resistant Basidioascus yeast, which is able to degrade different components in wood, including lignin, the tough part of plant cell walls that gives them structure and protects them from insect attacks.

Some of the microbes may have used novel strategies for increasing their numbers in the burn-scarred soils. “Penicillium is probably taking advantage of food released from necromass, or ‘dead bodies,’ and some species may also be able to eat charcoal,” Glassman said. 

Perhaps the team’s most significant finding is that fungi and bacteria — both those that survived the megafire and those that didn’t — appear to be genetically related to one another.

“They have shared adaptive traits that allow them to respond to fire, and this improves our ability to predict which microbes will respond, either positively or negatively, to events like these,” Glassman said. 

In general, little is known about fungi and the full extent of their effects on the environment. It is imperative that studies like these continue to reveal the ways they can help the environment recover from fires.

“One of the reasons there is so little understanding of fungi is that there are so few mycologists who study them,” Glassman said. “But they really do have important impacts, especially in the aftermath of major fires which are only increasing in frequency and severity both here and across the globe.”
 



Journal

Molecular Ecology

DOI

10.1111/mec.16399

Article Title

Mega-fire in redwood tanoak forest reduces bacterial and fungal richness and selects for pyrophilous taxa that are phylogenetically conserved

Article Publication Date

13-Feb-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Spiny chromis family

‘Traffic calming’ boosts breeding on coral reefs

May 20, 2022
Blood python in Kaeng Krachan National Park in Thailand

Snake trade in Indonesia is not sustainable enough — but it could be

May 20, 2022

‘Moth motorways’ could help resist climate change impact

May 20, 2022

Satellites and drones can help save pollinators

May 20, 2022

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Violence/CriminalsVaccineUrbanizationUniversity of WashingtonWeather/StormsUrogenital SystemWeaponryVirologyVaccinesVirusVehiclesZoology/Veterinary Science

Recent Posts

  • ‘Traffic calming’ boosts breeding on coral reefs
  • Snake trade in Indonesia is not sustainable enough — but it could be
  • ‘Moth motorways’ could help resist climate change impact
  • Satellites and drones can help save pollinators
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....