• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, February 4, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Making a quantum leap forward

Bioengineer by Bioengineer
January 18, 2023
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Capable of faster and more complex computing than a traditional computer, quantum computing is poised to quickly take machine learning and artificial intelligence to the next level. 

Alex K. Jones

Credit: University of Pittsburgh

Capable of faster and more complex computing than a traditional computer, quantum computing is poised to quickly take machine learning and artificial intelligence to the next level. 

New work at the University of Pittsburgh blends physics with computer engineering to accelerate quantum computing capabilities while taking inspiration from something more familiar: a tree. The work recently received a $300,000 New Initiative Grant from the Charles E. Kaufman Foundation.

“One of the challenges of quantum computers is that the interactions tend to be noisy—there isn’t 100 percent fidelity,” said Alex K. Jones, professor of electrical and computer engineering at Pitt, who is leading this project. “The state changes create noise over time, so from input to output, it’s a race against decoherence, the loss of information. We’re working to create better gates so that the time for each operation is shorter, resulting in better error correction and higher fidelity.”

Qubits are the basic unit of information in quantum computing. Where binary code in computer science uses bits, either 1s or 0s, qubits function together in a system, like atoms, and can be entangled with other qubits. That means anything done to one qubit happens to the entangled ones, as well. 

These properties make them much more powerful than bits—and much more complicated to work with.

To push quantum computing toward its full potential, Jones is partnering with Michael Hatridge, associate professor of physics at Pitt. They realized that in order to optimize the way these qubits talk to one another, the classic lattice structures used in IBM and Google’s quantum computers were limiting. 

Instead, they are arranging the qubits in the shape of a tree, a methodology from classical parallel computer networks. 

Jones and Hatridge are using a device called a SNAIL that allows them to create interactions between qubits as if they form elements, like “leaves,” on a tree, building a rich interaction space. In order for leaves on different “branches” to communicate, they must connect through the “trunk” of the tree, reaching out to their destination. With this SNAIL device, five or six qubits can interact with each other at the same time, opening the door for researchers to scale up this tree or other flexible approaches.  

For instance, the team has proposed a “Corral” topology unique to both physics and computer science in a paper that will appear at the February 2023 High-performance Computer Architecture (HPCA) Conference in Montreal..

“We realized the tree structure and these novel structures like the Corral made it easier to move data around and opened richer computational space,” said Jones. “With this award from the Kaufman Foundation, we are looking at the interaction between qubits  within individual modules. What can we learn about these nodes, and how do we pick the best computational interactions among them to advance the power of quantum computing so that each qubit can accomplish more than before?”

Noting that this is only the first of several in-dept collaborations in this area, Jones added,

“We’ve only just scratched the surface.”

The New Initiative Grants “encourage investigators with strong research records to establish interdisciplinary collaborations requiring expertise beyond that of any single researcher and take a novel approach to the topic in question,” according to the Pittsburgh Foundation’s news release. This is the 11th time a Pitt researcher has received this grant.



Share12Tweet7Share2ShareShareShare1

Related Posts

Children think more highly of the naturally talented over hard workers, according to a research by HKUST.

Preference for naturally talented over hard workers emerges in childhood, HKUST researchers find

February 4, 2023
road

Black South Africans report higher life satisfaction and are at less risk for depression post-migration, MU study finds

February 3, 2023

New treatment approach for prostate cancer could stop resistance in its tracks

February 3, 2023

Living in a violent setting can result in a shorter, but also a more unpredictable lifespan, according to new research from NYU Abu Dhabi social scientists

February 3, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    65 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Preference for naturally talented over hard workers emerges in childhood, HKUST researchers find

Black South Africans report higher life satisfaction and are at less risk for depression post-migration, MU study finds

New treatment approach for prostate cancer could stop resistance in its tracks

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In