• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, March 31, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Machine learning to identify cancer type-specific driver mutations for the development of new drug targets and treatment strategies

Bioengineer by Bioengineer
March 2, 2023
in Cancer
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

According to Statistics Korea, cancer is the top cause of death in 2021, accounting for 26% of deaths. Most cancer patients miss the golden window for treatment since symptoms only develop after cancer progresses. The World Health Organization reports that more than 30% of patients can be in complete remission if cancer is detected and treated early. For early diagnosis of cancer, it is necessary to predict the driver mutations in tissues and identify if they are cancer-causing.

Figure 1

Credit: POSTECH

According to Statistics Korea, cancer is the top cause of death in 2021, accounting for 26% of deaths. Most cancer patients miss the golden window for treatment since symptoms only develop after cancer progresses. The World Health Organization reports that more than 30% of patients can be in complete remission if cancer is detected and treated early. For early diagnosis of cancer, it is necessary to predict the driver mutations in tissues and identify if they are cancer-causing.

Recently, a POSTECH research team led by Professor Sanguk Kim, Dr. Donghyo Kim, and Dr. Doyeon Ha (Department of Life Sciences) developed a machine learning model that can accurately predict whether tissue-specific mutations in patients’ genes could cause cancer. The findings from the study were published in Briefings in Bioinformatics.

Identifying the cancer type-specific mutations (driver mutations) is pivotal to shedding light on the distinct pathological mechanisms across various tumors and to provide each patient with opportunities for treatment. The research team devised a novel feature based on sequence co-evolution analysis to identify cancer type-specific driver mutations and constructed a machine learning model with state-of-the-art performance. The team’s ML framework outperformed current leading methods of detection as it collected data from 28,000 tumor samples across 66 cancer types.

The researchers developed a machine learning model that predicts the oncogenicity of driver mutations, using protein sequencing. The model has better accuracy and sensitivity compared to pre-existing models. Also, they successfully identified protein residues* or mutations that may cause specific cancers by devising a novel feature based on sequence co-evolution analysis for machine learning.

The cancer mutations in the study have been confirmed to shape specific oncogenesis by mediating networks of tissue-specific protein interactions. These results show promise to lead to the effective prevention and treatment of cancer, combining early detection diagnostic technologies and the identification of new treatments.

 “This technology can identify novel oncogenic driver mutations – that were previously undetectable – to help design distinct strategies for cancer diagnosis and treatment that are different from conventional methods,” explained Professor Sanguk Kim.

This study was conducted with the support from the POSTECH Medical Device Innovation Center, Graduate School of Artificial Intelligence, and the Mid-career Researcher Program of the National Research Foundation of Korea.



Journal

Briefings in Bioinformatics

DOI

10.1093/bib/bbac593

Article Title

An evolution-based machine learning to identify cancer type-specific driver mutations

Article Publication Date

27-Dec-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blood brain barrier

New study offers clues to how cancer spreads to the brain

March 31, 2023
Researchers

Oregon State researchers develop new model for quickly evaluating potential cervical cancer drugs

March 31, 2023

Researchers report that the outcome of patients with a rare type of astrocytoma, a neuron tumor, is worse than expected

March 31, 2023

Five researchers awarded pilot project funding

March 30, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    68 shares
    Share 27 Tweet 17
  • Extinction of steam locomotives derails assumptions about biological evolution

    48 shares
    Share 19 Tweet 12
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Harnessing nature to promote planetary sustainability

New study offers clues to how cancer spreads to the brain

The Institut Pasteur and the University of São Paulo sign articles of association to establish the Institut Pasteur in São Paulo

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In