• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, January 29, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Ludwig Lausanne researchers develop strategy to noninvasively monitor key immune cells in tumors

Bioengineer by Bioengineer
October 19, 2022
in Cancer
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

OCTOBER 19, 2022, NEW YORK – A Ludwig Cancer Research study has developed a strategy to noninvasively track immune cells known as macrophages within brain and breast tumors in living mice. Cancers often recruit and reprogram these tumor-associated macrophages, or TAMs, to support their own growth and confer resistance to therapies. Led by Ludwig Lausanne’s Johanna Joyce and Davide Croci and their colleague at the Lausanne University Hospital, Ruud B. van Heeswijk, the study appears in the current issue of Science Translational Medicine and is featured on the cover of the journal.

Johanna Joyce

Credit: Ludwig Cancer Research

OCTOBER 19, 2022, NEW YORK – A Ludwig Cancer Research study has developed a strategy to noninvasively track immune cells known as macrophages within brain and breast tumors in living mice. Cancers often recruit and reprogram these tumor-associated macrophages, or TAMs, to support their own growth and confer resistance to therapies. Led by Ludwig Lausanne’s Johanna Joyce and Davide Croci and their colleague at the Lausanne University Hospital, Ruud B. van Heeswijk, the study appears in the current issue of Science Translational Medicine and is featured on the cover of the journal.

“Macrophage monitoring has the potential to significantly improve the therapeutic management of a variety of cancers,” said Joyce. “Brain malignancies, among the deadliest primary cancers and metastases, especially depend on the presence of macrophages and the targeting of these immune cells may represent a key strategy for their treatment.”

The Joyce lab has for several years investigated the critical role played by TAMs and other immune cells in tumors that originate in the brain or metastasize there from elsewhere, such as the breast, lung or skin. She and her colleagues have shown, for example, how drugs that block the action of a factor essential to macrophage growth can reprogram TAMs from a cancer-supporting state to a cancer-killing state. They’ve discovered how the resident macrophages of the brain, microglia, and those drawn to tumors from the blood circulation—monocyte-derived macrophages (MDMs)—differentially populate gliomas and brain metastases. Their studies have also demonstrated how TAMs contribute to the recurrence and therapeutic resistance of brain tumors, and identified strategies to address each of these challenges.

The ability to track changes in macrophage numbers and distribution over time could, therefore, do much to improve the management of brain cancer therapy. But this is easier said than done. Currently, the immune landscape of gliomas can only be viewed via biopsy, which—aside from being highly invasive and thus anything but routine—provides just a glimpse of a small segment of a tumor at a particular point in time.

To noninvasively study TAM populations over time, Joyce and her colleagues exploited a basic function of the immune cells, which is to roam around the body, gobbling up particulate matter. They injected mouse models of gliomas, breast cancer and breast-to-brain metastases with two different types of nanoparticles, both labeled with a fluorine isotope (19F), that each emits a distinctive and discernible signal detectable by magnetic resonance imaging (MRI)—a standard imaging technology of cancer care. The signals emitted by these nanoparticles are also distinct from the one transmitted by a hydrogen isotope (1H), which is used to image tissue, including cancerous growths.

The researchers demonstrate that the nanoparticles accumulate in TAMs, permitting a direct and non-invasive means to ascertain with “multispectral” MR imaging not just the abundance but also the location of the immune cells across the geography of tumors. Their imaging revealed, for example, that the labeled TAMs accumulate around the leaky, malformed blood vessels generated by tumors, a discovery that could have implications for combination therapies under development that seek to normalize tumor vasculature to improve drug delivery.

Radiotherapy is a standard treatment of glioma, and recent research by the Joyce lab has shown that it significantly alters the overall number and types of TAMs after initial irradiation and upon disease recurrence. In the current study, Joyce, Croci, van Heeswijk and colleagues confirmed that while microglia and MDMs are found in roughly equal numbers in untreated gliomas, MDMs tend to take over and cluster together at a distance from microglia in tumors that recur following radiotherapy.

“The imaging revealed previously unknown niches for TAMs in untreated, dormant and recurrent gliomas,” says Joyce. “It also captured how the distribution of TAMs differs between gliomas and brain metastases. The imaging approaches developed in this study could, with further development, help clinicians noninvasively identify brain tumor types, better monitor prognosis and drug resistance and thus improve the therapeutic management of brain tumors.”

Those strategies will, moreover, furnish scientists with a window into the changing immune landscapes of tumors, revealing insights critical to the development of new cancer therapies.

This study was supported by Ludwig Cancer Research, the Swiss Cancer Research Foundation, the Charlie Teo Foundation, the University of Lausanne, the Swiss National Science Foundation, the Deutsche Forschungsgemeinschaft, the Austrian Science Fund FWF, the Human Frontier Science Program, the Netherlands Organization for Scientific Research and the European Union’s Horizon 2020 research and innovation program.

In addition to her Ludwig Institute appointment, Johanna Joyce is a Professor at the University of Lausanne.

 

# # #

 

About Ludwig Cancer Research

Ludwig Cancer Research is an international collaborative network of acclaimed scientists that has pioneered cancer research and landmark discovery for more than 50 years. Ludwig combines basic science with the ability to translate its discoveries and conduct clinical trials to accelerate the development of new cancer diagnostics and therapies. Since 1971, Ludwig has invested nearly $3 billion in life-changing science through the not-for-profit Ludwig Institute for Cancer Research and the six U.S.-based Ludwig Centers. To learn more, visit www.ludwigcancerresearch.org.

For further information please contact Rachel Reinhardt, [email protected]



Journal

Science Translational Medicine

Share12Tweet8Share2ShareShareShare2

Related Posts

World-first guidelines created to help prevent heart complications in children during cancer treatment

World-first guidelines created to help prevent heart complications in children during cancer treatment

January 29, 2023
Automated MALDI-TOF MS based high-throughput screening workflow for in vitro enzyme assays

A new Assay screening method shows therapeutic promise for treating auto-immune disease

January 27, 2023

Louisiana Cancer Research Center appoints Associate Director of Administration

January 27, 2023

Afternoon chemotherapy proved to deliver more desirable results for female lymphoma patients

January 27, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    64 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

World-first guidelines created to help prevent heart complications in children during cancer treatment

Simulations reproduce complex fluctuations in soft X-ray signal detected by satellites

Measles virus ‘cooperates’ with itself to cause fatal encephalitis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In