• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, August 15, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Light–matter interactions simulated on the world’s fastest supercomputer

Bioengineer by Bioengineer
January 7, 2022
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Tsukuba, Japan – Light–matter interactions form the basis of many important technologies, including lasers, light-emitting diodes (LEDs), and atomic clocks. However, usual computational approaches for modeling such interactions have limited usefulness and capability. Now, researchers from Japan have developed a technique that overcomes these limitations.

Image

Credit: University of Tsukuba

Tsukuba, Japan – Light–matter interactions form the basis of many important technologies, including lasers, light-emitting diodes (LEDs), and atomic clocks. However, usual computational approaches for modeling such interactions have limited usefulness and capability. Now, researchers from Japan have developed a technique that overcomes these limitations.

In a study published this month in The International Journal of High Performance Computing Applications, a research team led by the University of Tsukuba describes a highly efficient method for simulating light–matter interactions at the atomic scale.

What makes these interactions so difficult to simulate? One reason is that phenomena associated with the interactions encompass many areas of physics, involving both the propagation of light waves and the dynamics of electrons and ions in matter. Another reason is that such phenomena can cover a wide range of length and time scales.

Given the multiphysics and multiscale nature of the problem, light–matter interactions are typically modeled using two separate computational methods. The first is electromagnetic analysis, whereby the electromagnetic fields of the light are studied; the second is a quantum-mechanical calculation of the optical properties of the matter. But these methods assume that the electromagnetic fields are weak and that there is a difference in the length scale.

“Our approach provides a unified and improved way to simulate light–matter interactions,” says senior author of the study Professor Kazuhiro Yabana. “We achieve this feat by simultaneously solving three key physics equations: the Maxwell equation for the electromagnetic fields, the time-dependent Kohn–Sham equation for the electrons, and the Newton equation for the ions.”

The researchers implemented the method in their in-house software SALMON (Scalable Ab initio Light–Matter simulator for Optics and Nanoscience), and they thoroughly optimized the simulation computer code to maximize its performance. They then tested the code by modeling light–matter interactions in a thin film of amorphous silicon dioxide, composed of more than 10,000 atoms. This simulation was carried out using almost 28,000 nodes of the fastest supercomputer in the world, Fugaku, at the RIKEN Center for Computational Science in Kobe, Japan.

“We found that our code is extremely efficient, achieving the goal of one second per time step of the calculation that is needed for practical applications,” says Professor Yabana. “The performance is close to its maximum possible value, set by the bandwidth of the computer memory, and the code has the desirable property of excellent weak scalability.”

Although the team simulated light–matter interactions in a thin film in this work, their approach could be used to explore many phenomena in nanoscale optics and photonics.

###

The article, “Large-scale ab initio simulation of light-matter interaction at the atomic scale in Fugaku,” was published in The International Journal of High Performance Computing Applications at DOI: https://doi.org/10.1177/10943420211065723

Funding: This research was supported by MEXT as a priority issue (theme 7) to be tackled using the Post-K Computer; by JST-CREST (grant number JP-MJCR16N5); and by the MEXT Quantum Leap Flagship Program (MEXT Q-LEAP, grant number JPMXS0118068681).



DOI

10.1177/10943420211065723

Article Title

Large-scale ab initio simulation of light-matter interaction at the atomic scale in Fugaku

Share12Tweet7Share2ShareShareShare1

Related Posts

Shells as seawater sensors

Study shows Gulf of Maine cooling for 900 years, then quickly warming since late 1800s

August 15, 2022
MOU signing at the Royal Institutionby Professor Pam Thomas, Chief Executive Officer of the Faraday Institution in the UK, and Dr Peter F. Green, Deputy Laboratory Director for Science and Technology and Chief Research Officer of the U.S. Department of Energy’s (DOE’s) National Renewable Energy Laboratory (NREL).

The Faraday Institution and NREL sign MOU in support of US UK joint battery research

August 15, 2022

Sugar chain on cell surface directs cancer cells to die

August 15, 2022

Colorful solar panels could make the technology more attractive

August 15, 2022

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    56 shares
    Share 22 Tweet 14
  • Fatigue, headache among top lingering symptoms months after COVID

    40 shares
    Share 16 Tweet 10
  • Ill-fated ‘Into the Wild’ adventurer was victim of unfortunate timing, Oregon State study suggests

    39 shares
    Share 16 Tweet 10
  • Skin: An additional tool for the versatile elephant trunk

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

UrbanizationWeaponryUrogenital SystemWeather/StormsViolence/CriminalsVirusVaccinesUniversity of WashingtonVehiclesZoology/Veterinary ScienceVirologyVaccine

Recent Posts

  • Study shows Gulf of Maine cooling for 900 years, then quickly warming since late 1800s
  • The Faraday Institution and NREL sign MOU in support of US UK joint battery research
  • Sugar chain on cell surface directs cancer cells to die
  • Colorful solar panels could make the technology more attractive
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In