• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, June 30, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Lew lab sheds new light on cell membranes

Bioengineer by Bioengineer
May 26, 2022
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Research from the lab of Matthew Lew at Washington University in St. Louis offers entirely new ways to see the very small.

Light and lipids

Credit: Oument Zhang/WashU

Research from the lab of Matthew Lew at Washington University in St. Louis offers entirely new ways to see the very small.

The research — two papers by PhD students at the McKelvey School of Engineering — was published in the journals Optica and Nano Letters.

They have developed novel hardware and algorithms that allow them to visualize the building blocks of the biological world beyond three dimensions in a way that, until now, wasn’t feasible. After all, cells are 3D objects and full of “stuff” — molecules — that moves around, rotates, spins and tumbles to drive life itself.

Like traditional microscopes, the work of two PhD students in the Lew lab, Tingting Wu and Oumeng Zhang, uses light to peer into the microscopic world — but their innovations are anything but traditional. Currently, when people use light in imaging, they are likely interested in how bright that light is or what color it is. But light has other properties, including polarization.

“Oumeng’s work twists the polarization of light,” said Lew, assistant professor in the Preston M. Green Department of Electrical & Systems Engineering. “This way, you can see both how things translate (move in straight lines) and rotate at the same time” — something traditional imaging doesn’t do.

You can read the paper online

“The development of new technology and the capability to see things we previously couldn’t see is exciting,” Zhang said. This unique capability to track both rotation and position at the same time gives him unique insights into how biological materials — human cells and pathogens, for instance — interact.

Wu’s research also provides a new way to image cell membranes and, in a way, to see inside of them. Using fluorescent tracer molecules, she maps how the tracers interact with fat and cholesterol molecules in the membrane, determining how the lipids are arranged and organized.

“Any cell membrane, any nucleus, anything in the cell is a 3D structure,” she said. “This helps us probe the full picture of a biological system. This enables us, for any biological sample, to see beyond three dimensions — we see the 3D structure plus three dimensions of molecular orientation, giving us 6D images.”

The researchers developed computational imaging technology, which synergizes software and hardware together, to successfully see the previously unseeable.

“That’s part of the innovation,” Lew said. “Traditionally, biological imaging labs have been tied down to whatever commercial manufacturers are making. But if we engineer things differently, we can do so much more.”



Journal

Optica

DOI

10.1364/OPTICA.451899

Method of Research

Computational simulation/modeling

Subject of Research

Not applicable

Article Title

Dipole-spread-function engineering for simultaneously measuring the 3D orientations and 3D positions of fluorescent molecules

Article Publication Date

20-May-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Pickled snakes

The art of getting DNA out of decades-old pickled snakes

June 30, 2022
Sample of cards used in the experiment

Clashes of inference and perspective explain why children sometimes lose the plot in conversation

June 30, 2022

The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers

June 30, 2022

New research: Up to 540,000 lives could be saved worldwide by targeting speed and other main areas

June 29, 2022

POPULAR NEWS

  • Pacific whiting

    Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    37 shares
    Share 15 Tweet 9
  • University of Miami Rosenstiel School selected for National ‘Reefense’ Initiative focusing on Florida and the Caribbean

    35 shares
    Share 14 Tweet 9
  • Saving the Mekong delta from drowning

    37 shares
    Share 15 Tweet 9
  • Sharks may be closer to the city than you think, new study finds

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Weather/StormsZoology/Veterinary ScienceVirologyVirusVaccineViolence/CriminalsWeaponryUrogenital SystemUniversity of WashingtonUrbanizationVehiclesVaccines

Recent Posts

  • The art of getting DNA out of decades-old pickled snakes
  • Clashes of inference and perspective explain why children sometimes lose the plot in conversation
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers
  • New research: Up to 540,000 lives could be saved worldwide by targeting speed and other main areas
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....