• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, July 1, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Korea Maritime and Ocean University scholars find key to reducing defects in multimaterials

Bioengineer by Bioengineer
May 18, 2022
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Materials used in the fields of aerospace, automobiles, medical equipment, defense need to withstand extremely harsh environments. Small flaws in the materials, i.e. cracks, can lead to catastrophic consequences and massive economic loss. However, most materials cannot handle such high temperatures and pressures. Multimaterials, like functionally graded materials (FGMs), which combine different materials to produce improved performance, are ideal in this situation.

Controlling gradient ratio in functionally graded materials (FGMs) can minimize defects

Credit: National Korea Maritime & Ocean University

Materials used in the fields of aerospace, automobiles, medical equipment, defense need to withstand extremely harsh environments. Small flaws in the materials, i.e. cracks, can lead to catastrophic consequences and massive economic loss. However, most materials cannot handle such high temperatures and pressures. Multimaterials, like functionally graded materials (FGMs), which combine different materials to produce improved performance, are ideal in this situation.

Multimaterials are normally made by additive manufacturing (AM), where layers of different materials are deposited one over the other. However, cracks and pores are common at the boundary layers due to the different properties of the materials. FGMs seek to reduce these cracks by creating a ‘gradient’ to the composition change across the volume of the material. Now, researchers from Korea Maritime and Ocean University have developed a way to synthesize a high-performance FGM made of Inconel 718 and stainless steel (STS) 316L and minimize its defects. According to Professor Do-Sik Shim, who led the study, “Inconel 718 has excellent properties, but it is expensive. By mixing it with STS 316L to create a high-performance FGM, we have not only improved its technical and commercial advantages, but its economic feasibility as well.” Their findings are published in Journal of Materials Research and Technology.

For their work, the research team deposited STS 316L onto Inconel 718 using a 3D-printing technique called ‘directed energy deposition.’ They created three types of FGMs, non-graded (NG), which involved a layer of STS deposited directly on Inconel, graded (10), and graded (25), which had mixing gradients of 10% and 25% respectively. They found that interfacial cracks were common in the NG type, whereas Graded (10) and Graded (25) had cracks only in specific regions due to ‘columnar-to-equitaxial transition’ (a transition in the microstructure of the FGM), precipitation, or the inclusion of titanium, aluminium or chromium impurities. They moreover saw that the Graded (25) type showed the highest tensile strength and elongation.

These findings indicate that the microstructure and mechanical properties of FGM are highly dependent upon the gradient ratio of the components, thereby creating the potential to achieve minimal or even no defects in FGMs. “These findings will lead to improvements in the field, such as reduced costs, extended component lifespans in equipment, and enhanced functionality,” says Professor Shim. The research team’s future plans include using the new FGM to manufacture complex shaped parts using AM technologies.

 

***

 

Reference

DOI: https://doi.org/10.1016/j.jmrt.2022.01.029

Authors:

Seung Weon Yang a,b, Jongcheon Yoon b, Hyub Lee b,**, Do Sik Shim c,*

Affiliations:

a Department of Materials Science & Engineering, Yonsei University, Republic of Korea

b Advanced Joining and Additive Manufacturing R&D Department, Korea Institute of Industrial Technology, Republic of Korea

c Department of Ocean Advanced Materials Convergence Engineering, Korea Maritime and Ocean University, Republic of Korea

 

About National Korea Maritime & Ocean University 

South Korea’s most prestigious university for maritime studies, transportation science and engineering, the National Korea Maritime & Ocean University is located on an island in Busan. The university was established in 1945 and since then has merged with other universities to currently being the only post-secondary institution that specializes in maritime sciences and engineering. It has four colleges that offer both undergraduate and graduate courses.  

Website: http://www.kmou.ac.kr/english/main.do

 

About the author

Dr. Do-Sik Shim received a Ph.D. in Mechanical Engineering from KAIST, Korea, in 2010. He has been an associate professor at the Korea Maritime and Ocean University since 2017. His research interests include additive manufacturing (AM), sheet metal forming, finite element simulations, as well as optimal design. Over the last few years, his group has been actively researching metal AM techniques, such as directed energy deposition and powder bed fusion, in terms of process design, mechanical and metallurgical characteristics, and industrial applications.



Journal

Journal of Materials Research and Technology

DOI

10.1016/j.jmrt.2022.01.029

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Defect of functionally graded material of Inconel 718 and STS 316L fabricated by directed energy deposition and its effect on mechanical properties

Article Publication Date

1-Apr-2022

COI Statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Share12Tweet7Share2ShareShareShare1

Related Posts

Evolutionary tree

Hidden in genetics: The evolutionary relationships of two groups of ancient invertebrates revealed

July 1, 2022
DNA nicks induce efficient HTR

“Soft” CRISPR may offer a new fix for genetic defects

July 1, 2022

Emerging Omicron subvariants BA.2.12.1, BA.4 and BA.5 are inhibited less efficiently by antibodies

July 1, 2022

Mathematical model helps predict anal cancer risk in persons with HIV infection

July 1, 2022

POPULAR NEWS

  • Pacific whiting

    Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    37 shares
    Share 15 Tweet 9
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers

    35 shares
    Share 14 Tweet 9
  • University of Miami Rosenstiel School selected for National ‘Reefense’ Initiative focusing on Florida and the Caribbean

    35 shares
    Share 14 Tweet 9
  • Mapping the ‘energy fingerprints’ of lung cancer leads to fundamental treatment rethink

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Violence/CriminalsVirologyUrogenital SystemZoology/Veterinary ScienceVaccineUniversity of WashingtonUrbanizationWeather/StormsVehiclesVirusWeaponryVaccines

Recent Posts

  • Hidden in genetics: The evolutionary relationships of two groups of ancient invertebrates revealed
  • “Soft” CRISPR may offer a new fix for genetic defects
  • Emerging Omicron subvariants BA.2.12.1, BA.4 and BA.5 are inhibited less efficiently by antibodies
  • Mathematical model helps predict anal cancer risk in persons with HIV infection
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....