• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, July 7, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Joint research revealed the importance of anthropogenic vapors on haze pollution over Hong Kong and Mainland China’s megacities

Bioengineer by Bioengineer
May 28, 2022
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Prof. WANG Zhe, Assistant Professor at the Hong Kong University of Science and Technology (HKUST)’s Division of Environment and Sustainability, has collaborated with international scientists and revealed the significant roles of anthropogenic low-volatility organic vapors on the secondary organic aerosols (SOA) formation in four megacities in China, providing new insights for effectively mitigating the urban air pollution issues.

Figure 1

Credit: HKUST

Prof. WANG Zhe, Assistant Professor at the Hong Kong University of Science and Technology (HKUST)’s Division of Environment and Sustainability, has collaborated with international scientists and revealed the significant roles of anthropogenic low-volatility organic vapors on the secondary organic aerosols (SOA) formation in four megacities in China, providing new insights for effectively mitigating the urban air pollution issues.

Air pollution kills around 7 million people worldwide each year, and is the largest environmental health risk.  Air pollutants could be directely emitted from various emission sources, or formed via complex atmospheric reactions of precusors both from natural (e.g. plants) and anthropogenic sources (e.g. traffic, coal combustion, etc).  The pollution measures are effective in controlling primary pollutants, but it has been very challenging to mitigate the secondary pollutants, because of the large knowledge gaps in the underlying formation mechanisms.

SOA contributes a significant fraction to the particulate haze pollution in many urbanized regions, with profound impacts on climate and human health. The knowledge gaps in the sources and relevant chemical processes of SOA formation are the bottleneck for implementing effective measures to mitigate haze pollution.  This joint research confirmed the dominant roles of anthropogenic low-volatility organic vapors as critical intermediates connecting the oxidation of volatile organic compounds (VOCs) to SOA and haze pollution in urban environments.  

The HKUST researchers conducted a comprehensive field study in Hong Kong, and duirng the same period, coordinated studies were concurrently carried out in three other Chinese megacities by mainland and international researchers in Beijing, Nanjing, and Shanghai.  For the first time, the joint research characterized plenty of highly reactive oxygenated organic molecules (OOMs) in different urban environments, and developed a novel classification framework to trace the measured OOMs and formed SOA to different precursors.

The results showed that oxidation of anthropogenic VOCs dominates OOMs formation in the urban atmosphere, with approximately 40% contribution from aromatics and another 40% contribution from aliphatic hydrocarbons, a previously under-accounted class of VOCs.  The study unveiled that multi-step oxidation and auto-oxidation processes play key roles in OOMs formation, and nitrogen oxides (NOx) significantly affect the VOCs oxidation process, producing a considerable fraction of nitrogen-containing organic compounds.  The irreversible condensation of these anthropogenic OOMs is a dominant source of SOA, even under severe haze conditions.

The study showed a strong homogeneity in the distribution and formation pathways of OOMs across China’s three most urbanized regions, where more than 800 million people live and suffer from air pollution. It implies a possibility of solving air pollution issues with a uniform and effective mitigation strategy across these highly populated city clusters.

The study findings were recently published in the scientific journal Nature Geoscience.  Prof. WANG Zhe from ENVR of HKUST is one of the co-first authors of the work. The other co-first authors include Prof. NIE Wei and Prof. YAN Chao from Nanjing University and Prof. HUANG Dandan from Shanghai Academy of Environmental Sciences (a former Ph.D. graduate from HKUST).  Other contributing authors included scientists from the US, Finland, Switzerland, Macau, Hong Kong, and mainland China. The study received funding support from the Hong Kong Research Grants Council and the National Natural Science Foundation of China.



Journal

Nature Geoscience

DOI

10.1038/s41561-022-00922-5

Article Title

Secondary organic aerosol formed by condensing anthropogenic vapours over China’s megacities

Article Publication Date

8-Apr-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Illustration compares the traditional method of ethylbenzene dehydrogenation with the new method.

New styrene production method improves stability, dehydrogenation activity

July 7, 2022
New method to autonomously identify novel functional magnetic materials

Towards autonomous prediction and synthesis of novel magnetic materials

July 7, 2022

How nuclear war would affect earth today

July 7, 2022

Green building progress in the “13th Five-Year Plan” of China

July 7, 2022

POPULAR NEWS

  • blank

    Telescopic contact lenses

    40 shares
    Share 16 Tweet 10
  • Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    38 shares
    Share 15 Tweet 10
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers

    37 shares
    Share 15 Tweet 9
  • Emerging Omicron subvariants BA.2.12.1, BA.4 and BA.5 are inhibited less efficiently by antibodies

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VehiclesViolence/CriminalsWeather/StormsUniversity of WashingtonWeaponryUrogenital SystemVaccinesUrbanizationVaccineZoology/Veterinary ScienceVirologyVirus

Recent Posts

  • New styrene production method improves stability, dehydrogenation activity
  • Towards autonomous prediction and synthesis of novel magnetic materials
  • How nuclear war would affect earth today
  • Green building progress in the “13th Five-Year Plan” of China
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....