• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, May 21, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

It’s the pore that counts

Bioengineer by Bioengineer
April 21, 2022
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In the public debate on climate protection, the importance of soil is often forgotten. However, soils store considerably more carbon globally than forests or the atmosphere. The long-term storage of carbon can be quite complex. On one hand, it depends on how much atmospheric carbon enters the soil through root growth, various mixing processes (e.g. soil cultivation or the activity of earthworms), and the seepage of dissolved organic compounds. On the other hand, it depends on whether the existing carbon in the soil can be stabilised or is decomposed by bacteria and fungi. Which process is more efficient – storage or decomposition – is determined primarily by the structure of the soil (e.g. the size of the network of pores that help transport air, water, and nutrients). “The carbon stored in plant residues and humus is not decomposed if bacteria or fungal hyphae are larger than the pores in the soil where it is stored”, says Dr. Steffen Schlüter, UFZ soil physicist and lead author of the study. What’s more: If the pores are permanently filled with water and thus without oxygen supply (e.g. in intact peat soils), bacteria find it more difficult to use the carbon. “One of the decisive factors for where carbon is stored in the soil is thus the spatial distribution of the pores”, says Schlüter. It had previously not been possible to study the distribution pattern of the organic carbon within the millimetre and micrometre sized pores.

X-ray CT images from different soils

Credit: UFZ

In the public debate on climate protection, the importance of soil is often forgotten. However, soils store considerably more carbon globally than forests or the atmosphere. The long-term storage of carbon can be quite complex. On one hand, it depends on how much atmospheric carbon enters the soil through root growth, various mixing processes (e.g. soil cultivation or the activity of earthworms), and the seepage of dissolved organic compounds. On the other hand, it depends on whether the existing carbon in the soil can be stabilised or is decomposed by bacteria and fungi. Which process is more efficient – storage or decomposition – is determined primarily by the structure of the soil (e.g. the size of the network of pores that help transport air, water, and nutrients). “The carbon stored in plant residues and humus is not decomposed if bacteria or fungal hyphae are larger than the pores in the soil where it is stored”, says Dr. Steffen Schlüter, UFZ soil physicist and lead author of the study. What’s more: If the pores are permanently filled with water and thus without oxygen supply (e.g. in intact peat soils), bacteria find it more difficult to use the carbon. “One of the decisive factors for where carbon is stored in the soil is thus the spatial distribution of the pores”, says Schlüter. It had previously not been possible to study the distribution pattern of the organic carbon within the millimetre and micrometre sized pores.

But the scientists at the UFZ have now managed to do this. With their new method, they can precisely localise the carbon in the soil. It is based on the staining of the organic compounds with osmium tetroxide, which sorbs onto the carbon-containing double bonds and is then visualised using X-ray computed tomography (CT). By scanning the soil sample before and after staining, the researchers can infer the distribution of the carbon from the differences in the images. Until now, this was possible only with the help of elaborate synchrotron CT methods. However, because there are only two particle accelerators of this kind in Germany, access is severely limited. In contrast, X-ray CT is more widespread at soil science institutes in Germany. The new approach thus facilitates research. “You can’t normally look inside the soil. But this methodological innovation allows us to draw conclusions about where and how well carbon is enriched in soil depending on the pore system and organic material such as roots and litter”, says Prof. Hans-Jörg Vogel, head of the Department of Soil System Science at the UFZ. This provides important information about processes in the soil and thus also about the consequences they have for the stabilisation and decomposition of carbon in soil.

As an example, the soil scientists tested their methodology at three sites with different soil types and different moisture regimes: a Chernozem site with low annual precipitation at the UFZ research station in Bad Lauchstädt, a fine-textured Luvisol site with seasonal water logging in the foothills of the Alps, and a permanently wet Gleysol site influenced by groundwater near Gießen. The result: in the immediate vicinity of the pores (i.e. in a margin of 50 to 100 micrometres), the concentration of carbon is lower than in the rest of the soil. This is mainly because microbial activity decreases with increasing distance from the pores. “This pattern has been seen at all three sites regardless of the moisture regime. The proximity to the pore system thus favours the decomposition of organic matter, and the distance to these pores promotes the stabilisation of carbon in the topsoil – the layer that is particularly important for agriculture”, says Schlüter. In contrast, there are differences in the carbon content around organic material such as plant residues. In dry Chernozem soil, the carbon decreases with distance to the plant residues. The bacteria and fungi are attached to the plant residues so they can easily get at the carbon and metabolise it. The decomposition products then accumulate around the plant residues. In the Gleysol, the opposite was true. The scientists found no enrichment of products around the plant residues. One explanation is that dissolved decomposition products are more easily transported over longer distances under the wet conditions. “The moisture regime strongly influences the stabilisation patterns of carbon in the soil because it controls the extent of carbon relocation from the plant residues into the surrounding soil”, says Schlüter.

The new methodological approach now opens up interesting research perspectives such as how the carbon is distributed in the subsoil (i.e. the deeper soil layers up to one metre). So far, there is only circumstantial evidence that the distribution patterns of carbon in the subsoil are different from those in the topsoil. That’s because the latter is not influenced by tillage and is not so intensely mixed by burrowing animals. Carbon can reach deeper layers only through accumulation at the few roots or the diffusion of dissolved organic substances. “It would be exciting to find out more about these processes. Because of climate change and the resulting frequent droughts in the topsoil, plants are increasingly lacking water. “The importance of the subsoil for plant growth is thus increasing”, says Vogel. With the new method, the researchers hope to better understand the processes of carbon storage in deeper layers as well as the causes of the differences in the carbon balance between different forms of land management (e.g. grassland use and arable farming).



Journal

Nature Communications

DOI

10.1038/s41467-022-29605-w

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Microscale carbon distribution around pores and particulate organic matter varies with soil moisture regime

Article Publication Date

21-Apr-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Graphyne

Long-hypothesized ‘next generation wonder material’ created for first time

May 21, 2022
Flower strips next to a conventional wheat field

Organic farming or flower strips – which is better for bees?

May 21, 2022

Haptics device creates realistic virtual textures

May 20, 2022

Researchers unveil a secret of stronger metals

May 20, 2022

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Violence/CriminalsUniversity of WashingtonVaccineVehiclesWeather/StormsWeaponryVirusUrbanizationVaccinesUrogenital SystemVirologyZoology/Veterinary Science

Recent Posts

  • Long-hypothesized ‘next generation wonder material’ created for first time
  • Organic farming or flower strips – which is better for bees?
  • Haptics device creates realistic virtual textures
  • Researchers unveil a secret of stronger metals
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....