• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, May 24, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Increased heat and drought stunt tropical trees, a major carbon sink

Bioengineer by Bioengineer
March 31, 2022
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

For a long time, ecologists assumed tree rings to be absent in tropical trees because of a lack of temperature and rain fluctuations in the trees’ environment. But in recent decades, the formation of growth rings has been proven for hundreds of tropical tree species, which are sensitive to drought and usually experience at least a month or two of slightly reduced rainfall every year.

Tropical forest canopy

Credit: Peter Groenendijk

For a long time, ecologists assumed tree rings to be absent in tropical trees because of a lack of temperature and rain fluctuations in the trees’ environment. But in recent decades, the formation of growth rings has been proven for hundreds of tropical tree species, which are sensitive to drought and usually experience at least a month or two of slightly reduced rainfall every year.

When scientists better understand how tropical trees respond to unusually dry and warm conditions, they can better predict how these trees will be affected by climate change.

A new study, co-authored by University of Arizona researchers and published in Nature Geoscience, has found that tropical trees’ trunk growth is reduced in years when the dry season is drier and warmer than normal. The study defines the tropics in a way that also includes the subtropics – or anything between 30 degrees north latitude and 30 degrees south latitude.

The researchers also found that the effect of drier and warmer years is more dramatic in more arid or warm regions in the tropics. This suggests that climate change may increase the sensitivity of tropical trees to climatic fluctuations. Temperatures at the study sites are expected to increase by half a degree Celsius per decade in the future.

The results of the study help explain the large fluctuations in carbon uptake by tropical vegetation globally. Model simulations show that during hotter or drier years, tropical vegetation grows less and therefore takes up less carbon dioxide from the atmosphere. But actual measurements of vegetation growth have been lacking until now.

Research shows that slower growth increases the risk of topical tree death, so tropical vegetation may more frequently become a source of carbon dioxide instead of absorbing this greenhouse gas that causes climate change.

“These (tropical) tree rings contain a wealth of information on the growth history of trees,” said lead study author Pieter Zuidema of Wageningen University & Research in the Netherlands. “In this study, we exploit that potential. For the first time, we get a pantropical picture of how tropical tree growth reacts to climate fluctuations.”

The study was an international collaborative effort that included University of Arizona dendrochronology Valerie Trouet, a professor in the Laboratory of Tree-Ring Research, and Flurin Babst, an assistant research professor in the UArizona School of Natural Resources and the Environment. The findings are based on a new global network, created by the collaborators, of over 14,000 tree-ring data series from 350 locations across 30 tropical and sub-tropical countries.

The authors were surprised to find that during the dry season, climate had a stronger effect on tree growth than during the wet season.

“We know that photosynthesis and wood production of tropical trees generally peak during the wet season,” Trouet said. “So, why do year-to-year fluctuations in trunk growth depend on the dry season? That surprised and puzzled us. Our explanation is that water is available for a longer period of time during years with wetter or cooler dry seasons. Put simply, the growing season is longer. This then leads to more trunk growth.”

The study also fills an important gap in tree-ring data.

“World maps showing the locations of tree-ring studies typically have a hole in the middle, in the tropics,” Zuidema said. “Our network fills that tropical data gap.”

The tree-ring data from more than 100 study locations has been uploaded to the International Tree-ring Databank, the global database for tree-ring data.

“In this way, the tree-ring data we’ve put together will be freely available for everyone,” Zuidema said.



Journal

Nature Geoscience

DOI

10.1038/s41561-022-00911-8

Method of Research

Data/statistical analysis

Article Title

Tropical tree growth driven by dry-season climate variability

Article Publication Date

31-Mar-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Figure 1

Human influence is the culprit for warm and wet winters in northwest Russia

May 24, 2022
Elodie Briefer

The case for speaking politely to animals

May 24, 2022

Mount Sinai launches Neural Epigenomics Research Center

May 23, 2022

Easy as an inkjet, a new soft printing technique has opened the way for pixelated elastics

May 23, 2022

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VaccinesVirologyWeather/StormsVirusVehiclesViolence/CriminalsZoology/Veterinary ScienceWeaponryUrogenital SystemUniversity of WashingtonUrbanizationVaccine

Recent Posts

  • Human influence is the culprit for warm and wet winters in northwest Russia
  • The case for speaking politely to animals
  • Mount Sinai launches Neural Epigenomics Research Center
  • Easy as an inkjet, a new soft printing technique has opened the way for pixelated elastics
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....