• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, May 21, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

How the Chagas pathogen changes the intestinal microbiota of predatory bugs

Bioengineer by Bioengineer
March 21, 2022
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

FRANKFURT. According to estimates by the World Health Organization (WHO), between six and seven million people worldwide, predominantly in Central and South America, are infected with the Trypanosoma cruzi species of trypanosome. This single-celled (protozoan) parasite causes Chagas disease (American trypanosomiasis), which in the acute phase is inconspicuous: only in every third case does the infected person develop any symptoms at all, which can then be unspecific, such as fever, hives and swollen lymph nodes. However, the parasites remain in the body, and many years later chronic Chagas disease can become life-threatening, with pathological enlargement of the heart and progressive paralysis of the gastrointestinal tract. 

Rhodnius prolixus

Credit: Dr Erwin Huebner, University of Manitoba, Winnipeg, Canada/ Wikimedia Commons

FRANKFURT. According to estimates by the World Health Organization (WHO), between six and seven million people worldwide, predominantly in Central and South America, are infected with the Trypanosoma cruzi species of trypanosome. This single-celled (protozoan) parasite causes Chagas disease (American trypanosomiasis), which in the acute phase is inconspicuous: only in every third case does the infected person develop any symptoms at all, which can then be unspecific, such as fever, hives and swollen lymph nodes. However, the parasites remain in the body, and many years later chronic Chagas disease can become life-threatening, with pathological enlargement of the heart and progressive paralysis of the gastrointestinal tract. 

There is no vaccine against the pathogen and treating the disease in the advanced stage is difficult. That is why the focus in Latin America is rather on controlling the bug that transmits Chagas trypanosomes: the predatory blood-sucking bug of the insect subfamily Triatominae. It ingests the trypanosomes during the sting, which then colonize its intestine. Through its faeces that it mostly deposited next to the bite, the bug excretes the pathogen, which is often rubbed into the wound when scratching the extremely itchy bite.

Although the number of new infections has dropped in various regions where insecticides are sprayed on a wide scale, problems are emerging: over the last decade, resistance to common insecticides by several species of predatory bugs has been increasingly observed. These insecticides also have a negative impact on the environment and the local population.

Researchers worldwide are making intense efforts to find alternative methods to help control Trypanosoma cruzi. One possibility might be to modify bacteria in the predatory bug’s intestine in such a way that they eliminate the Chagas trypanosomes or inhibit their development.

In collaboration with scientists at the Instituto René Rachou in Belo Horizonte, Brazil, parasitologists and infection biologists Fanny Eberhard and Professor Sven Klimpel from Goethe University, the Senckenberg – Leibniz Institution for Biodiversity and Earth System Research (SGN) and the LOEWE Centre for Translational Biodiversity Genomics have now investigated how Chagas trypanosomes change the bacterial community in the predatory bug’s intestine. To do so, they used genome analysis, which allowed them to compare the composition of the bacterial community in the bug’s intestine, the microbiome, before and after infection with the pathogen (metagenomic shotgun sequencing).

The result: after the infection, the range of bacterial strains in the bug’s intestine significantly decreased. Certain strains, including the potentially pathogenic bacterium Enterococcus faecalis, profited from the parasites’ presence. Moreover, the researchers succeeded in identifying four bacterial species that probably take on functions important for the bug, such as the synthesis of B vitamins.

Fanny Eberhard explains: “Vitamin B is one of the nutrients that blood-sucking insects do not obtain through their blood meals. Bacteria that produce vitamin B are therefore very important for the bug, are found in practically all individuals and stay in the predatory bug’s intestine even across generations. Hence, such bacteria are potentially suitable recipients for genes that produce defensive substances against Chagas trypanosomes.”

Professor Sven Klimpel elaborates: “Ultimately, our goal is for the predatory bug to defend itself against Chagas trypanosomes and, in this way, to prevent infection in humans. However, before we can produce bacteria with such properties and then release predatory bugs containing them, we need to understand better how the ecology of the bug’s intestine is structured and how the extensive interactions between host, pathogen and microbiome function. Our work is delivering an essential contribution to this.”

Background information:
Kissing bugs also find suitable climatic conditions in Europe (2020)
https://aktuelles.uni-frankfurt.de/englisch/kissing-bugs-also-find-suitable-climatic-conditions-in-europe/



Journal

Microbiome

DOI

10.1186/s40168-022-01240-z

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Exposure to Trypanosoma parasites induces changes in the microbiome of the Chagas disease vector Rhodnius prolixus

Article Publication Date

10-Mar-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Graphyne

Long-hypothesized ‘next generation wonder material’ created for first time

May 21, 2022
Flower strips next to a conventional wheat field

Organic farming or flower strips – which is better for bees?

May 21, 2022

Haptics device creates realistic virtual textures

May 20, 2022

Researchers unveil a secret of stronger metals

May 20, 2022

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Violence/CriminalsUniversity of WashingtonVaccineVehiclesWeather/StormsWeaponryVirusUrbanizationVaccinesUrogenital SystemVirologyZoology/Veterinary Science

Recent Posts

  • Long-hypothesized ‘next generation wonder material’ created for first time
  • Organic farming or flower strips – which is better for bees?
  • Haptics device creates realistic virtual textures
  • Researchers unveil a secret of stronger metals
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....