• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, June 3, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

How cancer genes become independent

Bioengineer by Bioengineer
May 5, 2023
in Cancer
Reading Time: 8 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Tumors sometimes seem to take on a life of their own, growing at an unusually fast rate or suddenly developing resistance to a cancer drug. This behavior is often explained by cancer genes separating from the cell’s own chromosomes and “striking out on their own” in ring shapes. So far, little has been known about how exactly these DNA rings arise and how they continue to develop as the tumor grows. An international team of researchers led by Charité – Universitätsmedizin Berlin and the Max Delbrück Center has now harnessed a new method to trace this path in neuroblastoma, a type of cancer. The results have been published in the journal Nature Genetics.*

Considered one of the biggest challenges in cancer research, DNA rings are tiny loops of genetic material floating around the nucleus of the cell by the hundreds, detached from the chromosomes. They were first discovered in 1965 and still pose many questions for researchers. Where do all these rings come from? What is their function? How do they affect the cells and the organism as a whole? One thing is clear: Nearly one-third of all tumors in pediatric and adult patients have DNA rings inside their cells – and those tumors are almost always highly aggressive. Ring-shaped DNA, termed extrachromosomal DNA (ecDNA), is also often implicated when a tumor develops resistance to a previously effective medication. Researchers around the world hope to identify new approaches to treating cancer by studying this specific form of genetic information. However, ecDNA does not always have a detrimental effect on cancer growth. Some of the rings also seem to be harmless.

“To tell the difference between dangerous and harmless DNA rings and be able to trace their evolution within the tumor, we have to look at the tissue one cell at a time,” explains the head of the study, Prof. Dr. Anton Henssen. He works at the Department of Pediatric Oncology and Hematology at Charité and does research at the Experimental and Clinical Research Center (ECRC), a joint institution of Charité and the Max Delbrück Center. Together with his team, he has now developed a technology that can read the genetic code of the existing DNA rings for each individual cell. At the same time, it tells which genes are active on the rings. “This lets us simply count how many cells in the tumor are home to a specific ring,” Henssen says. “If there aren’t many, then that ring is not highly relevant to the growth of the cancer. But if there are a lot of them, it evidently gives a tumor cell a selective advantage.”

Which DNA rings spur tumor growth?

The researchers initially used the new method to take a snapshot of all DNA rings in cultured neuroblastoma cells. Neuroblastoma is a form of highly malignant cancer that is especially prevalent in very young children. The research showed that no two cancer cells are alike – where one might have 100 DNA rings floating around, the next might have 2,000. The rings also vary greatly in size, with the smallest of them consisting of only 30 genetic components and the largest comprising over a million.

“The big DNA rings are loaded with cancer genes originating in the chromosomes of the cell,” explains Rocío Chamorro González, the study’s first author, who also does research at the Department of Pediatric Oncology and Hematology at Charité and the ECRC. “The ring shape lets them circumvent the classic laws of genetics, so they take on a kind of autonomy. These cancer genes have struck out on their own, if you will. We are only just starting to understand the ramifications. In our study, we found the large DNA rings in many neuroblastoma cells, so they are evidently spurring cell growth. The small rings were only found in isolation, so they are probably not very relevant to the cancer cells.”

Evolution of an independent cancer gene

To understand how an ecDNA originates in the first place and then evolves within a tumor, the second step for the research group was to analyze a pediatric neuroblastoma – cell by cell. Their findings suggest that MYCN, a known cancer gene, first detached from its chromosome of origin and formed a ring shape at the start of the tumor’s growth in this case. Then two of the rings merged to form a larger one, which went on to lose a shorter segment and then a longer one. “The last ring seems to have been the first to confer a growth advantage, because it is the only one that appears in many of the neuroblastoma cells,” Henssen says. “This shows that the cancer gene not only became independent through these processes, but also continued to ‘improve.’”

This kind of insight into the evolution of DNA rings within a tumor would have been impossible if not for the newly developed method. The team of researchers now plans to use the same method to reconstruct the stages of development in further cases of cancer. The researchers hope this will allow them to distinguish better between dangerous and harmless DNA rings. “Our hope is that in the future, we will be able to see in an individual case whether or not that tumor is especially aggressive, just from looking at the DNA rings,” Henssen says. “And then we could adjust the treatment. That’s why testing the predictive power of specific DNA rings is the next target for our research.”

*Chamorro González R et al. Parallel sequencing of extrachromosomal circular DNAs and transcriptomes in single cancer cells. Nat Genet 2023 May 04. doi: 10.1038/s41588-023-01386-y

Nuclei and chromosomes of neuroblastoma cells

Credit: © Charité | Rocío Chamorro González

Tumors sometimes seem to take on a life of their own, growing at an unusually fast rate or suddenly developing resistance to a cancer drug. This behavior is often explained by cancer genes separating from the cell’s own chromosomes and “striking out on their own” in ring shapes. So far, little has been known about how exactly these DNA rings arise and how they continue to develop as the tumor grows. An international team of researchers led by Charité – Universitätsmedizin Berlin and the Max Delbrück Center has now harnessed a new method to trace this path in neuroblastoma, a type of cancer. The results have been published in the journal Nature Genetics.*

Considered one of the biggest challenges in cancer research, DNA rings are tiny loops of genetic material floating around the nucleus of the cell by the hundreds, detached from the chromosomes. They were first discovered in 1965 and still pose many questions for researchers. Where do all these rings come from? What is their function? How do they affect the cells and the organism as a whole? One thing is clear: Nearly one-third of all tumors in pediatric and adult patients have DNA rings inside their cells – and those tumors are almost always highly aggressive. Ring-shaped DNA, termed extrachromosomal DNA (ecDNA), is also often implicated when a tumor develops resistance to a previously effective medication. Researchers around the world hope to identify new approaches to treating cancer by studying this specific form of genetic information. However, ecDNA does not always have a detrimental effect on cancer growth. Some of the rings also seem to be harmless.

“To tell the difference between dangerous and harmless DNA rings and be able to trace their evolution within the tumor, we have to look at the tissue one cell at a time,” explains the head of the study, Prof. Dr. Anton Henssen. He works at the Department of Pediatric Oncology and Hematology at Charité and does research at the Experimental and Clinical Research Center (ECRC), a joint institution of Charité and the Max Delbrück Center. Together with his team, he has now developed a technology that can read the genetic code of the existing DNA rings for each individual cell. At the same time, it tells which genes are active on the rings. “This lets us simply count how many cells in the tumor are home to a specific ring,” Henssen says. “If there aren’t many, then that ring is not highly relevant to the growth of the cancer. But if there are a lot of them, it evidently gives a tumor cell a selective advantage.”

Which DNA rings spur tumor growth?

The researchers initially used the new method to take a snapshot of all DNA rings in cultured neuroblastoma cells. Neuroblastoma is a form of highly malignant cancer that is especially prevalent in very young children. The research showed that no two cancer cells are alike – where one might have 100 DNA rings floating around, the next might have 2,000. The rings also vary greatly in size, with the smallest of them consisting of only 30 genetic components and the largest comprising over a million.

“The big DNA rings are loaded with cancer genes originating in the chromosomes of the cell,” explains Rocío Chamorro González, the study’s first author, who also does research at the Department of Pediatric Oncology and Hematology at Charité and the ECRC. “The ring shape lets them circumvent the classic laws of genetics, so they take on a kind of autonomy. These cancer genes have struck out on their own, if you will. We are only just starting to understand the ramifications. In our study, we found the large DNA rings in many neuroblastoma cells, so they are evidently spurring cell growth. The small rings were only found in isolation, so they are probably not very relevant to the cancer cells.”

Evolution of an independent cancer gene

To understand how an ecDNA originates in the first place and then evolves within a tumor, the second step for the research group was to analyze a pediatric neuroblastoma – cell by cell. Their findings suggest that MYCN, a known cancer gene, first detached from its chromosome of origin and formed a ring shape at the start of the tumor’s growth in this case. Then two of the rings merged to form a larger one, which went on to lose a shorter segment and then a longer one. “The last ring seems to have been the first to confer a growth advantage, because it is the only one that appears in many of the neuroblastoma cells,” Henssen says. “This shows that the cancer gene not only became independent through these processes, but also continued to ‘improve.’”

This kind of insight into the evolution of DNA rings within a tumor would have been impossible if not for the newly developed method. The team of researchers now plans to use the same method to reconstruct the stages of development in further cases of cancer. The researchers hope this will allow them to distinguish better between dangerous and harmless DNA rings. “Our hope is that in the future, we will be able to see in an individual case whether or not that tumor is especially aggressive, just from looking at the DNA rings,” Henssen says. “And then we could adjust the treatment. That’s why testing the predictive power of specific DNA rings is the next target for our research.”

*Chamorro González R et al. Parallel sequencing of extrachromosomal circular DNAs and transcriptomes in single cancer cells. Nat Genet 2023 May 04. doi: 10.1038/s41588-023-01386-y

About the study
The study arose as part of the Cancer Grand Challenges initiative, which has been receiving funding from Cancer Research UK and the National Cancer Institute at the National Institutes of Health in the U.S. since 2020. The topic of extrachromosomal DNA is being studied in the eDyNAmiC project as one of the major challenges in cancer research. Prof. Henssen and his team are part of the international eDyNAmiC research consortium. The newly published study has received additional funding from the European Research Council (ERC). It arose from a close cooperation with the Memorial Sloan Kettering Cancer Center in New York. Prof. Henssen holds a Mildred Scheel Professorship funded by the Deutsche Krebshilfe nonprofit organization and is a scientific member of the German Cancer Consortium (DKTK) at the Berlin site.



Journal

Nature Genetics

DOI

10.1038/s41588-023-01386-y

Article Title

Parallel sequencing of extrachromosomal circular DNAs and transcriptomes in single cancer cells.

Article Publication Date

4-May-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Shubham Pant, M.D.

ASCO: Targeted therapy induces responses in HER2-amplified biliary tract cancer

June 3, 2023
Dr. James Harding

For advanced, HER2-amplified bile duct cancers, antibody treatment trial shows promising results

June 2, 2023

Results of SWOG S1929 trial show patients with small-cell lung cancer with SLFN11 expression can benefit from PARP inhibitor added to immune checkpoint blockade

June 2, 2023

Scientists reveal new details of cellular process which prevents spread of cancer

June 2, 2023

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    40 shares
    Share 16 Tweet 10
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Deep sea surveys detect over five thousand new species in future mining hotspot

    35 shares
    Share 14 Tweet 9
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

ASCO: Targeted therapy induces responses in HER2-amplified biliary tract cancer

For advanced, HER2-amplified bile duct cancers, antibody treatment trial shows promising results

Startups to unveil cutting-edge point-of-care technologies at Boston medtech event

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In