• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, May 16, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Hoverfly brains mapped to detect the sound of distant drones

Bioengineer by Bioengineer
March 15, 2022
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

For the first time, Australian researchers have reverse engineered the visual systems of hoverflies to detect drones’ acoustic signatures from almost four kilometres away.

Bio-inspired vision detects military drones

Credit: University of South Australia

For the first time, Australian researchers have reverse engineered the visual systems of hoverflies to detect drones’ acoustic signatures from almost four kilometres away.

Autonomous systems experts from the University of South Australia, Flinders University and defence company Midspar Systems say that trials using bio-inspired signal processing techniques show up to a 50 per cent better detection rate than existing methods.

The findings, which could help combat the growing global threat posed by IED-carrying drones, including in Ukraine, have been reported in The Journal of the Acoustical Society of America.

UniSA Professor of Autonomous Systems, Anthony Finn, says that insect vision systems have been mapped for some time now to improve camera-based detections, but this is the first time that bio-vision has been applied to acoustic data.

“Bio-vision processing has been shown to greatly increase the detection range of drones in both visual and infrared data. However, we have now shown we can pick up clear and crisp acoustic signatures of drones, including very small and quiet ones, using an algorithm based on the hoverfly’s visual system,” Prof Finn says.

The hoverfly’s superior visual and tracking skills have been successfully modelled to detect drones in busy, complex and obscure landscapes, both for civilian and military purposes.

“Unauthorised drones pose distinctive threats to airports, individuals and military bases. It is therefore becoming ever-more critical for us to be able to detect specific locations of drones at long distances, using techniques that can pick up even the weakest signals. Our trials using the hoverfly-based algorithms show we can now do this,” Prof Finn says.

Associate Professor in Autonomous Systems at Flinders University, Dr Russell Brinkworth, says the ability to both see and hear small drones at greater distances could be hugely beneficial for aviation regulators, safety authorities and the wider public seeking to monitor ever increasing numbers of autonomous aircraft in sensitive airspace.

“We’ve witnessed drones entering airspace where commercial airlines are landing and taking off in recent years, so developing the capacity to actually monitor small drones when they’re active near our airports or in our skies could be extremely beneficial towards improving safety.

“The impact of UAVs in modern warfare is also becoming evident during the war in Ukraine, so keeping on top of their location is actually in the national interest. Our research aims to extend the detection range considerably as the use of drones increases in the civilian and military space.”

Compared with traditional techniques, bio-inspired processing improved detection ranges by between 30 and 49 per cent, depending on the type of drone and the conditions.

Researchers look for specific patterns (narrowband) and/or general signals (broadband) to pick up drone acoustics at short to medium distances, but at longer distance the signal is weaker and both techniques struggle to achieve reliable results.

Similar conditions exist in the natural world. Dark lit regions are very noisy but insects such as the hoverfly have a very powerful visual system that can capture visual signals, researchers say.

“We worked under the assumption that the same processes which allow small visual targets to be seen amongst visual clutter could be redeployed to extract low volume acoustic signatures from drones buried in noise,” Dr Brinkworth says.

By converting acoustic signals into two-dimensional ’images’ (called spectrograms), researchers used the neural pathway of the hoverfly brain to improve and suppress unrelated signals and noise, increasing the detection range for the sounds they wanted to detect.

Using their image-processing skills and sensing expertise, the researchers made this bio-inspired acoustic data breakthrough thanks to Federal Government funding through the Department of Defence’s Next Generation Technologies Fund

The funding partly supports technological solutions to address the weaponisation of drones which are now among the deadliest weapons in modern warfare, killing or injuring more than 3000 enemy combatants in Afghanistan and being deployed in the current war in Ukraine.

A video explaining the technology can be viewed here: https://youtu.be/zAmiyaDH5oQ



Journal

The Journal of the Acoustical Society of America

DOI

10.1121/10.0009350

Method of Research

Computational simulation/modeling

Subject of Research

Not applicable

Article Title

Acoustic detection of unmanned aerial vehicles using biologically inspired vision processing

Article Publication Date

10-Feb-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Ghosh, Burns and Sahoo, University of California San Diego

COVID-19, MIS-C and Kawasaki disease share same immune response

May 16, 2022
Phalotris shawnella

Striking new snake species discovered in Paraguay

May 16, 2022

Extraterrestrial stone brings first supernova clues to Earth

May 16, 2022

Lights, catalyst, reaction! Converting CO2 to formic acid using an alumina-supported, iron-based compound

May 16, 2022

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    42 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

UrbanizationZoology/Veterinary ScienceVirusVaccinesWeaponryVehiclesUniversity of WashingtonUrogenital SystemWeather/StormsVaccineViolence/CriminalsVirology

Recent Posts

  • COVID-19, MIS-C and Kawasaki disease share same immune response
  • Striking new snake species discovered in Paraguay
  • Extraterrestrial stone brings first supernova clues to Earth
  • Lights, catalyst, reaction! Converting CO2 to formic acid using an alumina-supported, iron-based compound
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....