• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, April 14, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

HKBU-led research team develops novel antiviral targeted drug for nasopharyngeal cancer

Bioengineer by Bioengineer
May 12, 2020
in Cancer
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Hong Kong Baptist University

A research team led by Hong Kong Baptist University (HKBU) has developed a novel anti-Epstein-Barr virus (EBV) drug that can selectively disrupt a viral protein produced by EBV, leading to the shrinkage of tumours caused by the virus. It is the first known agent to successfully target the virus and disturb its latency in tumour cells in this way.

The strategy of reactivation of EBV from its latency is a new trend in nasopharyngeal carcinoma (NPC) therapy, and some non-specific, anti-viral drugs have recently entered phase one or phase two clinical trials. Our new drug represents the first specific targeted agent to disrupt a single viral protein and to potently reactivate EBV from its latency. These research results were published in the international journal Proceedings of the National Academy of Sciences.

EBV infection can lead to cancer

EBV is a human herpesvirus that spreads through close person to person contact. It has infected more than 90% of the human population worldwide.

The human immune system usually suppresses the EBV activity effectively, but in some people the virus continues to exist in the human body and becomes a risk factor for many cancers, such as post-transplant lymphoproliferative disease, Hodgkin lymphoma, Burkitt lymphoma, T/Natural Killer cell lymphomas, some gastric carcinoma, and NPC — a highly prevalent cancer in Hong Kong and southern China.

In search of new therapies for EBV-related carcinomas, a research team comprising Professor Gary Wong Ka-Leung, Head of the Department of Chemistry, HKBU; Professor Mak Nai Ki, Professor, Department of Biology, HKBU; Dr Lung Hong Lok, Assistant Professor, Department of Chemistry, HKBU; and Dr Jiang Lijun, Research Assistant Professor, Department of Applied Biology and Chemical Technology at The Hong Kong Polytechnic University, developed a novel drug which has shown promising results in an animal model.

Novel drug binds and disrupts vital EBV protein

EBNA1 is the viral protein which is expressed in all EBV-associated tumour cells. EBNA1 plays a vital role in the maintenance of the viral genome and the proliferation of EBV-infected tumour cells.

The research team constructed a new peptide drug with higher affinity to the EBNA1 protein, leading to the disruption of the structure and functions of EBNA1. The tumour cells will thus stop proliferating and die eventually.

Furthermore, the study also showed that the new drug emits unique responsive fluorescence signals once bound with EBNA1 or its metal cofactor. The imaging results demonstrated that the drug can enter the nucleus of EBV-infected cells, where EBNA1 resides, to inhibit their growth and division. It could also potentially be applied to tumour cell imaging in the human body.

Reactivating EBV

After EBV infection, the virus can establish latent infection, remain hidden in the infected cells, and promote pathogenic development of the tumour cells. Disruption of EBV latent and induction of EBV lytic cycle is one of the current strategy to control of EBV-associated malignancy. As a result, the EBV-infected cells will die and will be eliminated by the immune system. The research team discovered that the new drug can reactivate EBV lytic cycle through the disruption of EBNA1, and provides a new mentality of treatment of NPC.

Testing the new drug in a mouse model

The research team tested the new drug in an animal model by injecting it into mice with heavy tumour burden of EBV-positive nasopharyngeal tumours. The new drug could restore the body weights of the mice in the treatment group to healthy levels and it completely shrank the tumours in 70 days. The survival rate was also remarkably raised to 86% for the treatment group while it was only 6% for the control group without any treatment.

“This discovery lays a good foundation for the development of therapeutics for the treatment of EBV-associated diseases such as NPC,” said Professor Gary Wong Ka-Leung.

Way forward

Patents have been filed for the new drug and its previous generation. Based on these patents, HKBU researchers have established a HKBU spin-off company, called BP InnoMed Limited, with startup support from the Technology Start-up Support Scheme for Universities, and the new company aims to further develop the drug and carry out clinical trials.

###

Media Contact
Dr. Lung Hong-lok
[email protected]

Original Source

https://cpro.hkbu.edu.hk/en/press_release/detail/HKBU-led-research-team-develops-novel-anti-viral-targeted-drug-for-nasopharyngeal-cancer-treatment/

Tags: BiochemistrycancerChemistry/Physics/Materials SciencesClinical Trials
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

DNA structure itself is involved in genome regulation

April 13, 2021
IMAGE

JNCCN Study: Important potential role for routine brain imaging in advanced kidney cancer

April 13, 2021

Researchers identify surface protein as a new osteosarcoma therapeutic target for antibody-drug conjugates

April 12, 2021

Machine learning can help with treatment planning and proper management of tongue cancer

April 12, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    852 shares
    Share 341 Tweet 213
  • Jonathan Wall receives $1.79 million to develop new amyloidosis treatment

    60 shares
    Share 24 Tweet 15
  • UofL, Medtronic to develop epidural stimulation algorithms for spinal cord injury

    56 shares
    Share 22 Tweet 14
  • A sturdier spike protein explains the faster spread of coronavirus variants

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Climate ChangeBiologyEcology/EnvironmentMaterialsChemistry/Physics/Materials SciencesGeneticsInfectious/Emerging DiseasesTechnology/Engineering/Computer SciencePublic HealthcancerMedicine/HealthCell Biology

Recent Posts

  • Dueling evolutionary forces drive rapid evolution of salamander coloration
  • Cascading effects of noise on plants persist over long periods and after noise is removed
  • Chemical modification of RNA could play key role in polycystic kidney disease
  • World’s protected areas need more than a ‘do not disturb’ sign
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In