• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, February 4, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Highlighting the molecular mechanism underlying pancreatic cancer development

Bioengineer by Bioengineer
December 9, 2022
in Cancer
Reading Time: 5 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers visualized the protein binding site of the (pro)renin receptor known to be involved in pancreatic cancer development using an artificial intelligence-based protein structure prediction program. They predicted the 3D shape of this receptor and revealed the presence of hand-shaped grooves, allowing for the binding of multiple proteins. This study provides the first 3D structural insight into the receptor binding and one-to-many interactions, underpinning the functional versatility of this receptor. These findings will increase our understanding of disease pathogenesis and aid us in exploring novel modalities to treat human diseases, including hypertension and cancer.

The 3D shape of the (pro)renin receptor predicted by AlphaFold2.

Credit: Akio Ebihara

Researchers visualized the protein binding site of the (pro)renin receptor known to be involved in pancreatic cancer development using an artificial intelligence-based protein structure prediction program. They predicted the 3D shape of this receptor and revealed the presence of hand-shaped grooves, allowing for the binding of multiple proteins. This study provides the first 3D structural insight into the receptor binding and one-to-many interactions, underpinning the functional versatility of this receptor. These findings will increase our understanding of disease pathogenesis and aid us in exploring novel modalities to treat human diseases, including hypertension and cancer.

 

Background

The (pro)renin receptor [(P)RR] is a cell membrane-bound protein that was originally identified as a potential regulator of the renin-angiotensin system, which is essential for maintaining blood pressure and body fluid balance. (P)RR contributes to the pathogenesis of various diseases, including hypertension and cancer. When this receptor is aberrantly expressed in normal human pancreatic cell lines, genomic instability (alterations in genes and chromosomes) can occur. Such increased receptor expression contributes to the early carcinogenesis of pancreatic ductal adenocarcinoma (PDAC), the most common pancreatic cancer. Researchers have reported that the antibodies against two (P)RR regions, located in the extracellular domain, could reduce the proliferation of human PDAC cells. Although these regions are likely to participate in cell proliferation pathway, their functional significance remains unclear.

 

Proteins are chains of amino acids. Each protein adopts a unique 3D shape based on its amino acid sequence (the order of amino acid residues). Functionally essential amino acid residues are evolutionarily conserved and clustered to form functional patches on the protein surface. To date, the 3D structure of the (P)RR extracellular domain has not been experimentally determined. In 2021, significant progress in protein 3D structure prediction was made using AlphaFold2 and RoseTTAFold, in which a protein 3D structural model was generated using machine learning algorithms with amino acid sequences as the only input. Both programs can predict protein structures with near-experimental accuracy. The researchers analyzed the 3D structure of (P)RR in silico using the AlphaFold2 program and evolutionary sequence conservation profile, and investigated the functional significance of the two regions involved in the PDAC antiproliferative effect.

 

Research Achievement

Researchers have visualized the residue positions and evolutionary sequence conservation profiles simultaneously on the 3D structure of (P)RR. The two regions mapped onto the structural model formed a continuous surface patch comprising evolutionarily conserved hydrophobic residues. Previous reports have demonstrated that the receptor forms a dimer, meaning that the two protein units are bound together to form one assembly unit. The generated AlphaFold2 model showed that (P)RR forms a back-to-back dimer via the extracellular domain, which explains the experimentally proven dimerization. The dimer model possessed two hand-shaped grooves with two regions of interest in the palms and an intrinsically disordered region in the fingers. Generally, an intrinsically disordered region adopts various conformations (3D shapes) under physiological conditions and can change the conformation to bind multiple partners. The surfaces of the grooves were hydrophobic, which allows for low stereospecific protein binding.

 

Perspectives

An open question regarding (P)RR functionality is its “promiscuity,” meaning that beyond blood pressure regulation, the receptor can work on a wide range of molecules. Thus, it is conceivable that (P)RR utilizes its “hand” to catch two binding partners in a promiscuous manner and tether them closely in space to facilitate protein-protein interactions. (P)RR, in particular, is thought to catch and tether two proteins involved in Wnt/β-catenin signaling, a cell proliferation pathway linked to the pancreatic cancer development. Overall, (P)RR functions as a scaffold protein, a hub for controlling the spatial and temporal organization of molecules within a cell, and thereby the flow of cellular information.

 

The findings of this study will be valuable for understanding disease pathogenesis and exploring novel modalities to treat human diseases, including hypertension and cancer. Further analyses are required to experimentally characterize the interactions between (P)RR and its interaction partners.

 

Reference

Authors:             Akio Ebihara1,2,3,4*, Daiki Sugihara5, Makoto Matsuyama6, Chiharu Suzuki-Nakagawa1, A.H.M. Nurun Nabi7, Tsutomu Nakagawa1, Akira Nishiyama8, and Fumiaki Suzuki1

Title of original

Paper:                 Mapping the protein binding site of the (pro)renin receptor using in silico 3D structural analysis

Journal:              Hypertension Research

DOI:                                  10.1038/s41440-022-01094-w

Affiliation: 1. Faculty of Applied Biological Sciences, Gifu University, Tokai National Higher Education and Research System, Japan

2. Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Tokai National Higher Education and Research System, Japan

3. Preemptive Food Research Center (PFRC), Gifu University Institute for Advanced Study, Japan

4. Department of Chemical Engineering, Indian Institute of Technology Guwahati, India

5. Graduate School of Natural Science and Technology, Gifu University, Tokai National Higher Education and Research System, Japan

6. Division of Molecular Genetics, Shigei Medical Research Institute, Japan

7. Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Bangladesh

8. Department of Pharmacology, Faculty of Medicine, Kagawa University, Japan



Journal

Hypertension Research

DOI

10.1038/s41440-022-01094-w

Article Title

Mapping the protein binding site of the (pro)renin receptor using in silico 3D structural analysis

Article Publication Date

9-Dec-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Brooke Emerling, Ph.D.

New treatment approach for prostate cancer could stop resistance in its tracks

February 3, 2023
MOU signing

MD Anderson announces new collaboration in Indonesia to reduce global cancer burden

February 3, 2023

Genes & Cancer | Leveraging allogeneic dendritic cells for neoantigen cancer vaccines

February 3, 2023

HKUMed discovers a new tumour suppressive gene which boosts personalised treatment response in breast cancer

February 3, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    65 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Preference for naturally talented over hard workers emerges in childhood, HKUST researchers find

Black South Africans report higher life satisfaction and are at less risk for depression post-migration, MU study finds

New treatment approach for prostate cancer could stop resistance in its tracks

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In