• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, August 16, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Gecko feet are coated in an ultra-thin layer of lipids that help them stay sticky

Bioengineer by Bioengineer
July 6, 2022
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Geckos are famous for having grippy feet that allow them to scale vertical surfaces with ease. They get this seeming superpower from millions of microscopic, hairlike structures on their toes.

Gecko Spatula

Credit: Credit: Marianne Meijer/Kerncraft Art & Graphics.

Geckos are famous for having grippy feet that allow them to scale vertical surfaces with ease. They get this seeming superpower from millions of microscopic, hairlike structures on their toes.

Now, scientists have zoomed in for an even closer look at those structures, called setae, and found that they are coated in an ultra-thin film of water-repelling lipid molecules only one nanometer, or billionths of a meter, thick.

Researchers from the National Institute of Standards and Technology (NIST) analyzed the surface of the setae using high-energy X-rays thrown off by a type of particle accelerator called a synchrotron. The synchrotron microscope showed that the lipid molecules line the surface of the setae in dense, orderly arrays. 

Lipids can play a role in this process because they are hydrophobic, meaning they repel water. “The lipids might function to push away any water beneath the spatulae, allowing them to make closer contact with the surface,” said physicist and co-author Tobias Weidner of Aarhus University in Denmark. “This would help geckos maintain their grip on wet surfaces.”

The setae and spatulae are made of a type of keratin protein similar to that found in human hair and fingernails. They are extremely delicate. The researchers showed that the keratin fibers are aligned in the direction of the setae, which might help them resist abrasion.

“The most exciting thing for me about this biological system is that everything is perfectly optimized on every scale, from the macro to the micro to the molecular,” said biologist and co-author Stanislav Gorb of Kiel University in Germany. “This can help biomimetic engineers know what to do next.”

“You can imagine gecko boots that don’t slip on wet surfaces, or gecko gloves for holding tools that are wet,” said NIST physicist and co-author Dan Fischer. “Or a vehicle that can run up walls, or a robot that can run along power lines and inspect them.”

The NIST synchrotron microscope that the researchers used to analyze the setae is unique in its ability to identify molecules on the surface of a three-dimensional object, measure their orientation and map their position. It is located at the U.S. Department of Energy’s Brookhaven National Laboratory, where the National Synchrotron Light Source II, a half-mile-long particle accelerator, provides a source of high-energy X-rays for illumination. 

This microscope is typically used to understand the physics of advanced industrial materials, including batteries, semiconductors, solar panels and medical devices. 

“But it is fascinating to figure out how gecko feet work,” Fischer said, “and we can learn a lot from nature when it comes to improving our own technology.”

An international team of researchers published the findings in Biology Letters. An earlier companion paper, published in Physical Chemistry Letters, used the same technique to show how the individual protein strands that make up the setae are aligned.

“A lot was already known about how setae work mechanically,” said NIST physicist and co-author Cherno Jaye. “Now we have a better understanding of how they work in terms of their molecular structure.” 

Geckos have inspired many products, including adhesive tapes with setae-like microstructures. Understanding the molecular features of setae might lead inventors who find inspiration in nature — a concept called biomimicry — to come up with even better designs.

Setae provide sticking power because they are flexible and assume the microscopic contours of whatever surface the gecko is climbing. Even smaller structures at the ends of the setae, called spatulae, make such close contact with the climbing surface that electrons in both materials interact, creating a type of attraction called van der Waals forces. To release its foot, which might otherwise stay stuck, the gecko changes the angle of the setae, interrupting those forces and allowing the animal to take its next step. 



Journal

Biology Letters

DOI

10.1098/rsbl.2022.0093

Subject of Research

Animals

Article Title

Evidence that gecko setae are coated with an ordered nanometer-thin lipid film

Article Publication Date

6-Jul-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Egg conveyer

Pulsed light technology effectively kills harmful pathogens in new study

August 16, 2022
PNAS-PR-Ray-Figure-16x9

Uncovering nature’s patterns at the atomic scale in living color

August 16, 2022

Machine translation could make English-only science accessible to all

August 16, 2022

The early bird gets the fruit: Fossil provides earliest evidence of fruit-eating by any animal

August 16, 2022

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    56 shares
    Share 22 Tweet 14
  • Fatigue, headache among top lingering symptoms months after COVID

    40 shares
    Share 16 Tweet 10
  • Ill-fated ‘Into the Wild’ adventurer was victim of unfortunate timing, Oregon State study suggests

    39 shares
    Share 16 Tweet 10
  • Skin: An additional tool for the versatile elephant trunk

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Violence/CriminalsUrogenital SystemVaccinesUrbanizationVirologyZoology/Veterinary ScienceVaccineVirusWeaponryUniversity of WashingtonWeather/StormsVehicles

Recent Posts

  • Pulsed light technology effectively kills harmful pathogens in new study
  • Uncovering nature’s patterns at the atomic scale in living color
  • Machine translation could make English-only science accessible to all
  • The early bird gets the fruit: Fossil provides earliest evidence of fruit-eating by any animal
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In