• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, August 15, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Fitness sensor warns when you’re at your limits

Bioengineer by Bioengineer
January 3, 2022
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Ultrathin nanomaterials, known as MXenes, are poised to make it easier to monitor a person’s well-being by analyzing their perspiration.

Fitness sensor warns when you're at your limits

Credit: © 2021 KAUST; Olga Kasimova

Ultrathin nanomaterials, known as MXenes, are poised to make it easier to monitor a person’s well-being by analyzing their perspiration.

While they share a similar two-dimensional nature to graphene, MXenes are composed of nontoxic metals, such as titanium, in combination with carbon or nitrogen atoms. With naturally high conductivity and strong surface charges, MXenes are attractive candidates for biosensors that can detect small changes to chemical concentrations.

In 2019, Husam Alshareef’s group developed a MXene composite electrode, which they enclosed in a wearable armband sensor. The device, which had a modular design that used MXene inserts loaded with appropriate enzymes, could absorb perspiration and detect several analytes in human sweat, including glucose and lactic acid.

Alshareef and his colleagues, in collaboration with Sahika Inal’s research team, recently tried combining MXene sheets with hydrogels — water-filled polymers that are compatible with human tissue because they are able to stretch. Intriguingly, the team found that high levels of mobile ions in the hydrogel produced strong sensitivity to the mechanical strain that occurs during exercise.

“Initially the MXene sheets are randomly oriented within the hydrogel, but once you apply pressure to them, the sheets become more horizontally oriented,” explains Alshareef. “Because MXenes have a high concentration of negative charges on their surfaces, horizontal arrangements strongly affect ion movements within the hydrogel, and thus we can measure different levels of pressure change.”

A prototype wearable sensor, developed with the new MXene–hydrogel compound, was able to track muscle movement by producing distinct electrical resistance patterns as mechanical stress increased. These patterns in turn changed instantly when the sensor was exposed to additional ions in the form of acidic or basic solutions.

This led the KAUST team to realize their device could be used to correlate pH changes in sweat to fatigue-inducing acid buildups in muscle cells.

“As we exercise and our muscles get tired, the sensor sees the new chemical environment and produces different electrical resistance versus stress curves,” says Kang Lee, a former KAUST postdoc and lead author of the study. “By comparing these curves to reference curves for a given sensor, we can determine the pH of the sweat and how fatigued the muscle is.”

With Bluetooth connectivity to nearby digital devices, the MXene-based sensor may prove valuable to athletes looking for real-time performance measurements once the technology is optimized. “The most serious challenge is the long-term stability of the sensor, so we’re looking at altering compositions and designs in future experiments,” says Alshareef.



Journal

Small Methods

DOI

10.1002/smtd.202100819

Method of Research

Experimental study

Article Title

Fitness sensor warns when you’re at your limits

Article Publication Date

26-Oct-2021

Share12Tweet7Share2ShareShareShare1

Related Posts

Shells as seawater sensors

Study shows Gulf of Maine cooling for 900 years, then quickly warming since late 1800s

August 15, 2022
MOU signing at the Royal Institutionby Professor Pam Thomas, Chief Executive Officer of the Faraday Institution in the UK, and Dr Peter F. Green, Deputy Laboratory Director for Science and Technology and Chief Research Officer of the U.S. Department of Energy’s (DOE’s) National Renewable Energy Laboratory (NREL).

The Faraday Institution and NREL sign MOU in support of US UK joint battery research

August 15, 2022

Sugar chain on cell surface directs cancer cells to die

August 15, 2022

Colorful solar panels could make the technology more attractive

August 15, 2022

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    56 shares
    Share 22 Tweet 14
  • Fatigue, headache among top lingering symptoms months after COVID

    40 shares
    Share 16 Tweet 10
  • Ill-fated ‘Into the Wild’ adventurer was victim of unfortunate timing, Oregon State study suggests

    39 shares
    Share 16 Tweet 10
  • Skin: An additional tool for the versatile elephant trunk

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

UrbanizationWeaponryUrogenital SystemWeather/StormsViolence/CriminalsVirusVaccinesUniversity of WashingtonVehiclesZoology/Veterinary ScienceVirologyVaccine

Recent Posts

  • Study shows Gulf of Maine cooling for 900 years, then quickly warming since late 1800s
  • The Faraday Institution and NREL sign MOU in support of US UK joint battery research
  • Sugar chain on cell surface directs cancer cells to die
  • Colorful solar panels could make the technology more attractive
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In