• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, May 23, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Finding the tipping point for coastal wetlands

Bioengineer by Bioengineer
January 25, 2022
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

DURHAM, N.C. — The Albemarle-Pamlico Peninsula covers more than 2,000 square miles on the North Carolina coastal plain, a vast expanse of forested swamps and tea-colored creeks. Many people would probably avoid this place, whose dense thickets of cane and shrubs and waterlogged soils can slow a hike to a crawl.

wetland plants, eastern North Carolina.

Credit: Please credit Steve Anderson, Duke University

DURHAM, N.C. — The Albemarle-Pamlico Peninsula covers more than 2,000 square miles on the North Carolina coastal plain, a vast expanse of forested swamps and tea-colored creeks. Many people would probably avoid this place, whose dense thickets of cane and shrubs and waterlogged soils can slow a hike to a crawl.

“It’s hard fieldwork,” says Duke University researcher Steve Anderson. “It gets really dense and scratchy. That, plus the heat and humidity mixed with the smell of sulfur and the ticks and the poison ivy; it just kind of adds up.”

But to Anderson and colleagues from Duke and North Carolina State University, these bottomlands are more than impenetrable marsh and muck and mosquitoes. They’re also a barometer of change.

Most of the area they study lies a mere two to three feet above sea level, which exposes it to surges of ocean water — 400 times saltier than freshwater — driven inland by storms and rising seas. The salt deposits left behind when these waters recede build up year after year, until eventually they become too much for some plants to cope with.

Trudging in hip waders through stunted shrubs and rotting tree stumps, Anderson snaps a picture with his phone of a carpet of partridge berry trailing along the forest floor. In some parts of the peninsula, he says, the soils are becoming so salty that plants like these can no longer reproduce or are dying off entirely.

In a recent study the team, led by professors Justin Wright and Emily Bernhardt of Duke, and Marcelo Ardón of NC State, surveyed some 112 understory plants in the region, making note of where they were found and how abundant they were in relation to salt levels in the soil.

The researchers identified a ‘tipping point,’ around 265 parts per million sodium, where even tiny changes in salinity can set off disproportionately large changes in the plants that live there.

Above this critical threshold, the makeup of the marsh floor suddenly shifts, as plants such as wax myrtle, swamp bay and pennywort are taken over by rushes, reeds and other plants that can better tolerate salty soils.

The hope is that monitoring indicator species like these could help researchers spot the early warning signs of salt stress, Anderson says.

This research was supported by grants from the National Science Foundation (DEB1713435, DEB 1713502, and Coastal SEES Collaborative Research Award Grant No. 1426802).

CITATION: “Salinity Thresholds for Understory Plants in Coastal Wetlands,” Anderson, S. M., E. A. Ury, P. J. Taillie, E. A. Ungberg, C. E. Moorman, B. Poulter, M. Ardón, E. S. Bernhardt, and J. P. Wright. Plant Ecology, Nov. 24, 2021. DOI: 10.1007/s11258-021-01209-2.



Journal

Plant Ecology

DOI

10.1007/s11258-021-01209-2

Method of Research

Observational study

Subject of Research

Not applicable

Article Title

Salinity Thresholds for Understory Plants in Coastal Wetlands

Article Publication Date

24-Nov-2021

COI Statement

NA

Share12Tweet7Share2ShareShareShare1

Related Posts

Fig.1

Staying flexible

May 23, 2022
The dynamic flow-based betting against beta (BAB) strategies outperform static strategies

Price noise proves the key to high performing ‘bets against beta’ investment strategies

May 23, 2022

California shellfish farmers adapt to climate change

May 23, 2022

National Comprehensive Cancer Network honors oncology leaders promoting progress in cancer care

May 23, 2022

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Zoology/Veterinary ScienceVaccinesUrogenital SystemVirologyVehiclesUrbanizationVirusUniversity of WashingtonVaccineWeaponryWeather/StormsViolence/Criminals

Recent Posts

  • Staying flexible
  • Price noise proves the key to high performing ‘bets against beta’ investment strategies
  • California shellfish farmers adapt to climate change
  • National Comprehensive Cancer Network honors oncology leaders promoting progress in cancer care
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....