• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, October 2, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Ethylene boosts plant yield and vigor

Bioengineer by Bioengineer
July 18, 2023
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Exposing seedlings to ethylene in darkness increases size and vigor, in a finding with implications for agriculture. Farmers have worked to increase crop yields for millennia, and the quest remains urgent as the human population continues to grow. Increases in yield often come at a price, however: reductions in stress tolerance. Brad Binder and colleagues sought to increase plant yield without sacrificing hardiness by using to the gaseous plant growth hormone ethylene. Previous work established that seedlings grown in the dark and treated with ethylene show reduced growth and a distinctive hooked shape. However, the authors found that when seedlings treated with ethylene in the dark for several days were subsequently given light (and had the ethylene treatment discontinued), the seedlings did better than controls, showing longer primary and lateral roots, a higher density of lateral roots, and an increase in aerial tissue fresh weight. The pattern was first observed in Arabidopsis thaliana, a mustard relative used as a model plant. Similar patterns were subsequently observed in tomato, cucumber, and wheat. Adding sugars to the treatment given in the dark increased the effect, suggesting that the ethylene treatment helps the plant ramp up its metabolism in preparation for emergence from the soil into the sunlight. A metabolomics analysis and RNA sequencing analyses supported this interpretation. In addition, experiments showed that plants treated with ethylene during darkness were more tolerant of extreme heat, salty soil, and low oxygen levels than controls. The results suggest that ethylene treatments could help improve yields across a range of crops without sacrificing stress tolerance, according to the authors.

Tomato

Credit: Brenya et al.

Exposing seedlings to ethylene in darkness increases size and vigor, in a finding with implications for agriculture. Farmers have worked to increase crop yields for millennia, and the quest remains urgent as the human population continues to grow. Increases in yield often come at a price, however: reductions in stress tolerance. Brad Binder and colleagues sought to increase plant yield without sacrificing hardiness by using to the gaseous plant growth hormone ethylene. Previous work established that seedlings grown in the dark and treated with ethylene show reduced growth and a distinctive hooked shape. However, the authors found that when seedlings treated with ethylene in the dark for several days were subsequently given light (and had the ethylene treatment discontinued), the seedlings did better than controls, showing longer primary and lateral roots, a higher density of lateral roots, and an increase in aerial tissue fresh weight. The pattern was first observed in Arabidopsis thaliana, a mustard relative used as a model plant. Similar patterns were subsequently observed in tomato, cucumber, and wheat. Adding sugars to the treatment given in the dark increased the effect, suggesting that the ethylene treatment helps the plant ramp up its metabolism in preparation for emergence from the soil into the sunlight. A metabolomics analysis and RNA sequencing analyses supported this interpretation. In addition, experiments showed that plants treated with ethylene during darkness were more tolerant of extreme heat, salty soil, and low oxygen levels than controls. The results suggest that ethylene treatments could help improve yields across a range of crops without sacrificing stress tolerance, according to the authors.



Journal

PNAS Nexus

DOI

10.1093/pnasnexus/pgad216

Article Title

Ethylene-mediated metabolic priming increases photosynthesis and metabolism to enhance plant growth and stress tolerance

Article Publication Date

18-Jul-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Figure 1: A case of emissions and transport of PM2.5 in Punjab to Delhi NCR in November 2-4, 2022 due to CRB.

Dense measurement network revealed high level of PM2.5 in Punjab due to crop residue burning and its transport to Haryana and Delhi NCR

October 2, 2023
A set of 33 droplets fabricated to create “OMU” using the optical vortex laser-induced printing technique

Next-generation printing: precise and direct, using optical vortices

October 2, 2023

Researchers studied thousands of fertility attempts hoping to improve IVF

October 2, 2023

Synergistic work of cations in anion exchange membranes for OH- transport in fuel cells

September 30, 2023

POPULAR NEWS

  • blank

    Microbe Computers

    59 shares
    Share 24 Tweet 15
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    35 shares
    Share 14 Tweet 9
  • Fossil spines reveal deep sea’s past

    34 shares
    Share 14 Tweet 9
  • Scientists go ‘back to the future,’ create flies with ancient genes to study evolution

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Dense measurement network revealed high level of PM2.5 in Punjab due to crop residue burning and its transport to Haryana and Delhi NCR

Next-generation printing: precise and direct, using optical vortices

Researchers studied thousands of fertility attempts hoping to improve IVF

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 56 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In