• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, May 30, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Elusive atmospheric wave detected during 2022 Tonga volcanic eruption

Bioengineer by Bioengineer
September 19, 2022
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The catastrophic eruption of the Hunga Tonga–Hunga Ha’apai volcano in 2022 triggered a special atmospheric wave that has eluded detection for the past 85 years. Researchers from the University of Hawai‘i (UH) at Mānoa, Japan Agency for Marine–Earth Science and Technology (JAMSTEC), and Kyoto University relied on state-of-the-art observational data and computer simulations to discover the existence of Pekeris waves—fluctuations in air pressure that were theorized in 1937 but never proven to occur in nature, until now.

Tonga eruption from space

Credit: NOAA.

The catastrophic eruption of the Hunga Tonga–Hunga Ha’apai volcano in 2022 triggered a special atmospheric wave that has eluded detection for the past 85 years. Researchers from the University of Hawai‘i (UH) at Mānoa, Japan Agency for Marine–Earth Science and Technology (JAMSTEC), and Kyoto University relied on state-of-the-art observational data and computer simulations to discover the existence of Pekeris waves—fluctuations in air pressure that were theorized in 1937 but never proven to occur in nature, until now.

The eruption in the South Pacific earlier this year released what was likely the most powerful explosion the world has experienced since the famous 1883 eruption of Mt. Krakatau in Indonesia.  The rapid release of energy excited pressure waves in the atmosphere that quickly spread around the world.

The atmospheric wave pattern close to the eruption was quite complicated, but thousands of miles away the disturbances were led by an isolated wave front traveling horizontally at over 650 miles an hour as it spread outward. The air pressure perturbations associated with the initial wave front was seen clearly on thousands of barometer records throughout the world.

Watch an animation of the global atmosphere after the Tonga eruption

“The same behavior was observed after the Krakatau eruption and in the early 20th century a physical theory for this wave was developed by the English scientist Horace Lamb,” said Kevin Hamilton, emeritus professor of atmospheric science at the UH Mānoa School of Ocean and Earth Science and Technology. “These motions are now known as Lamb waves.  In 1937, the American-Israeli mathematician and geophysicist Chaim Pekeris expanded Lamb’s theoretical treatment and concluded that a second wave solution with a slower horizontal speed should also be possible. Pekeris tried to find evidence for his slower wave in the pressure observations after the Krakatau eruption but failed to produce a convincing case.”

In the recent study, published in the Journal of the Atmospheric Sciences,  the team of scientists applied a broad range of tools now available including geostationary satellite observations, computer simulations and extremely dense networks of air pressure observations to successfully identify the Pekeris wave in the atmosphere following the Tonga eruption.

Lead author, Shingo Watanabe, deputy director of the JAMSTEC Research Center for Environmental Modeling, performed computer simulations of the response to the Tonga eruption.

“When we investigated the computer simulated and observed pulses over the entire Pacific basin, we found that the slower wave front could be seen over broad regions and that its properties matched those predicted by Pekeris almost a century ago,” said Hamilton.

Once the Pekeris wave was identified in the post-eruption aftermath the researchers realized that this result had more general implications for the motions in the atmosphere.  Specifically, they predicted that there should be set of corresponding global oscillations or modes of the atmosphere on times scales of several hours to days.  Analysis of long records of atmospheric pressure by study co-author Takatoshi Sakazaki, associate professor in the Graduate School of Science of Kyoto University, revealed the presence of the predicted set of oscillations.

“In our paper we propose a standard terminology of Lamb wave and Pekeris wave for the two solutions,” said Hamilton. “Chaim Pekeris later became world famous and is today regarded as ‘the father of Israeli geophysics’, but he did his calculation of the volcanic wave response as a very young researcher at MIT where he was known for his admiration for the earlier work of Lamb.  It is fitting that our discovery and our proposed nomenclature would permanently connect Chaim Pekeris with his scientific hero, Horace Lamb.”



Journal

Journal of the Atmospheric Sciences

DOI

10.1175/JAS-D-22-0078.1

Method of Research

Observational study

Subject of Research

Not applicable

Article Title

First Detection of the Pekeris Internal Global Atmospheric Resonance: Evidence from the 2022 Tonga Eruption and from Global Reanalysis Data

Article Publication Date

12-Sep-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Obstructive sleep apnea disrupts gene activity throughout the day in mice

Obstructive sleep apnea disrupts gene activity throughout the day in mice

May 30, 2023
michael HIV vaccine

Researchers use ‘natural’ system to identify proteins most useful for developing an effective HIV vaccine

May 30, 2023

Scientists identify how some angiogenic drugs used to treat cancer and heart disease cause vascular disease

May 30, 2023

CSI Singapore researchers uncover potential novel therapeutic targets against natural killer/T-cell lymphoma

May 30, 2023

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    39 shares
    Share 16 Tweet 10
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Groundbreaking study uncovers first evidence of long-term directionality in the origination of human mutation, fundamentally challenging Neo-Darwinism

    115 shares
    Share 46 Tweet 29
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Obstructive sleep apnea disrupts gene activity throughout the day in mice

Researchers use ‘natural’ system to identify proteins most useful for developing an effective HIV vaccine

Scientists identify how some angiogenic drugs used to treat cancer and heart disease cause vascular disease

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In