• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, May 22, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Dynamic rivers contributed to Amazon’s rich bird diversity

Bioengineer by Bioengineer
April 8, 2022
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

One of the most contentious questions in evolutionary biology is, how did the Amazon become so rich in species? A new study focused on birds examines how the movements of rivers in the Amazon have contributed to that area’s exceptional biological diversity. The research team, led by the American Museum of Natural History, found that as small river systems change over time, they spur the evolution of new species. The findings also reveal previously unknown bird species in the Amazon that are only found in small areas next to these dynamic river systems, putting them at high risk of imminent extinction. The study is detailed today in the journal Science Advances.

Amazon expedition

Credit: © Lukas Musher

One of the most contentious questions in evolutionary biology is, how did the Amazon become so rich in species? A new study focused on birds examines how the movements of rivers in the Amazon have contributed to that area’s exceptional biological diversity. The research team, led by the American Museum of Natural History, found that as small river systems change over time, they spur the evolution of new species. The findings also reveal previously unknown bird species in the Amazon that are only found in small areas next to these dynamic river systems, putting them at high risk of imminent extinction. The study is detailed today in the journal Science Advances.

The lowland rainforests of the Amazon River basin harbor more diversity than any other terrestrial ecosystem on the planet. It is also a globally important biome containing about 18 percent of all trees on Earth and carrying more fresh water than the next seven largest river basins combined. Researchers have long wondered and hotly debate how the Amazon’s rich biodiversity arose and accumulated.

“Early evolutionary biologists like Alfred Russel Wallace noticed that many species of primates and birds differ across opposite riverbanks in the Amazon, and ornithologists now know that rivers are associated—in one way or another—with the origin of many avian species,” said the study’s lead author Lukas Musher, a postdoctoral researcher at the Academy of Natural Sciences of Drexel University and a recent comparative biology Ph.D. graduate of the American Museum of Natural History’s Richard Gilder Graduate School. “Moreover, accumulating geological evidence has suggested that these rivers are highly dynamic, moving around the South American landscape over relatively short time periods, on the order of thousands or tens of thousands of years.”

To investigate how the movement of rivers across the landscape has influenced the accumulation of bird species in the Amazon, the researchers sequenced the genomes of six species of Amazonian birds.

“Even though birds can fly, our study confirmed that current rivers across the Southern Amazon rainforest, even relatively small ones, are highly effective at isolating populations of these six species, which leads to genomic divergence and ultimately speciation,” said the study’s senior author Joel Cracraft, Lamont Curator and curator-in-charge in the Museum’s Department of Ornithology.

However, because these rivers move around the landscape at different time scales, their movements can have varying outcomes for bird species: when river rearrangements occur quickly, populations of birds on each side can merge before they’ve had time to differentiate; when river changes happen slowly, species have a longer time to diverge from one another; and when rivers change at intermediate rates, bird populations diverge and then join back together and co-occur when a river moves.

The scientists also identified distinct populations of birds that should be described as separate species but have been considered a single species until now.

“Though we know Amazonian biodiversity is unmatched by any other terrestrial ecosystem, we demonstrated that its species richness may be greatly underestimated even in well-studied groups such as birds,” Musher said. “Our results corroborate those of other studies that have reported fine-scale patterns of diversity across the southern Amazon basin—a region threatened by rapid and ongoing deforestation—yet this diversity is generally unrecognized. Many of the distinct populations are relatively young and endemic to a small Amazonian region, meaning that a large portion of the Amazon’s birds may be threatened with loss to imminent extinction.”

Other authors on this study include Melina Giakoumis, City College of New York; James Albert, University of Louisiana at Lafayette; Glaucia Del-Rio, Marco Rego and Robb T. Brumfield, Louisiana State University; Camila C. Ribas, Instituto Nacional de Pesquisas da Amazônia; Alexandre Aleixo, University of Helsinki, Museu Paraense Emílio Goeldi, and Instituto Tecnológico Vale, Belém, Brazil; and Gregory Thom and Brian Smith, American Museum of Natural History.

This work was funded in part by the American Museum of Natural History’s Richard Gilder Graduate Research Fellowship, The Linda Gormezano Memorial Fund research grant, the Society for Systematic Biologists graduate student research grant, and NSF/NASA Dimensions US-Biota-São Paulo grant # 1241066.

DOI: 10.1126/sciadv.abn1099

 

ABOUT THE AMERICAN MUSEUM OF NATURAL HISTORY (AMNH)

The American Museum of Natural History, founded in 1869, is one of the world’s preeminent scientific, educational, and cultural institutions. The Museum encompasses more than 40 permanent exhibition halls, including those in the Rose Center for Earth and Space, and the Hayden Planetarium, as well as galleries for temporary exhibitions. The Museum’s scientists draw on a world-class permanent collection of more than 34 million specimens and artifacts, some of which are billions of years old, and on one of the largest natural history libraries in the world. Through its Richard Gilder Graduate School, the Museum grants the Ph.D. degree in Comparative Biology and the Master of Arts in Teaching (MAT) degree, the only such freestanding, degree-granting program at any museum in the United States. The Museum’s website, digital videos, and apps for mobile devices bring its collections, exhibitions, and educational programs to millions around the world. Visit amnh.org for more information. 



Journal

Science Advances

DOI

10.1126/sciadv.abn1099

Method of Research

Experimental study

Subject of Research

Animal tissue samples

Article Title

River network rearrangements promote speciation in lowland Amazonian birds

Article Publication Date

8-Apr-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Graphyne

Long-hypothesized ‘next generation wonder material’ created for first time

May 21, 2022
Flower strips next to a conventional wheat field

Organic farming or flower strips – which is better for bees?

May 21, 2022

Haptics device creates realistic virtual textures

May 20, 2022

Researchers unveil a secret of stronger metals

May 20, 2022

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Violence/CriminalsUniversity of WashingtonVaccineVehiclesWeather/StormsWeaponryVirusUrbanizationVaccinesUrogenital SystemVirologyZoology/Veterinary Science

Recent Posts

  • Long-hypothesized ‘next generation wonder material’ created for first time
  • Organic farming or flower strips – which is better for bees?
  • Haptics device creates realistic virtual textures
  • Researchers unveil a secret of stronger metals
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....