• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, December 10, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

‘Double strike’ strategy slows growth of drug-resistant breast cancer

Bioengineer by Bioengineer
November 8, 2023
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at the Centre for Genomic Regulation and Vall d’Hebron Institute of Oncology have shown that the simultaneous inhibition of two different proteins may represent a new strategy for tackling triple-negative breast cancer, the most aggressive and drug-resistant form of breast cancer. The findings are published today in the journal EMBO Molecular Medicine. 

Triple negative breast cancer cells

Credit: Laura Pascual Reguant/Centro de Regulación Genómica

Researchers at the Centre for Genomic Regulation and Vall d’Hebron Institute of Oncology have shown that the simultaneous inhibition of two different proteins may represent a new strategy for tackling triple-negative breast cancer, the most aggressive and drug-resistant form of breast cancer. The findings are published today in the journal EMBO Molecular Medicine. 

Breast cancer is the most commonly diagnosed type of cancer and the fourth most common cause of cancer-related death in women, with more than two million cases worldwide and 685,000 deaths in the year 2020. 

Around one in seven (15%) of these cases are a highly aggressive form of the disease known as triple-negative breast cancer. The prognosis for triple-negative breast cancer is poor. The disease is highly resistant to existing treatments because its cells lack the receptors that breast cancer drugs target. 

The enzyme LOXL2 has recently been shown to drive the growth of triple-negative breast cancer. A team led by Dr. Sara Sdelci at the Centre for Genomic Regulation and Dr. Sandra Peiró, together with researchers in the Upper GI Cancer Translational Research Group at the Vall d’Hebron Institute of Oncology, carried out various analyses to assess the enzyme’s suitability as a biomarker that can predict treatment outcome. 

They found that LOXL2 expression could only predict the outcomes of drugs which target the protein BRD4, a well-known driver of cancer. Driven by the intrigue of their findings, the researchers carried out further experiments to assess whether LOXL2 and BRD4 might be working together to help triple-negative breast cancer cells grow. 

Various experimental lab techniques showed that LOXL2 interacts with a version of BRD4 inside the nucleus. The researchers demonstrated that this interaction changes the expression of genes and ultimately helps triple-negative breast cancer cells grow. Inhibiting both proteins at the same time disrupted these interactions and helped slow the growth of cancer in cell cultures (in vitro) and three separate mouse models (in vivo). 

“Our deep dive into how triple-negative breast cancer cells grow at the molecular level have revealed a new mechanism which can be exploited for treatment purposes. It is exciting because a double strike strategy that targets both proteins could be combined with other treatments and transform triple-negative breast cancer from a disease with a very poor prognosis into one that is manageable,” says Dr. Laura Pascual Reguant, first author of the study and postdoctoral researcher at the Centre for Genomic Regulation in Barcelona. 

The findings have important implications for an experimental class of drugs known as BET inhibitors, which have shown some promise in tackling triple negative breast cancer. BET inhibitors work by compromising the function of BRD4, but have failed to pass the clinical trial stage because triple negative breast cancer cells acquire resistance. The authors of the study believe that simultaneous targeting both BRD4 and LOXL2 could help overcome this resistance.  

The next challenge will be finding how to safely and effectively target both proteins at once. One way is to combine existing inhibitors. Different versions of BRD4 are already being targeted by BET inhibitors in 30 different clinical trials, 5 of which are for triple negative breast cancer. LOXL2 inhibitors also exist, but their safety and efficacy in treating cancer has not been explored. The combination of both inhibitors has not been tested. 

“More work needs to be done before our findings will benefit patients, but any progress in understanding the mechanisms of this highly aggressive disease is good news. As we continue to shed light on how triple-negative breast cancer grows, the health challenges it poses might be more tractable than we first thought,” concludes Dr. Sdelci. 



Journal

EMBO Molecular Medicine

DOI

10.15252/emmm.202318459

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Interactions between BRD4S, LOXL2, and MED1 drive cell cycle transcription in triple-negative breast cancer

Article Publication Date

8-Nov-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Prithviraj Bose, M.D.

ASH: Targeted oral therapy reduced disease burden and improved symptoms for patients with rare blood disorder

December 9, 2023
Elgamal works in lab

University of Cincinnati hematology experts present research at national conference

December 8, 2023

Peptide power is ON

December 8, 2023

University of Toronto researchers discover new lipid nanoparticle that shows muscle-specific mRNA delivery, reduces off-target effects.

December 8, 2023

POPULAR NEWS

  • Figure 1

    Understanding rapid tendon regeneration in newts may one day help human athletes

    85 shares
    Share 34 Tweet 21
  • Photonic chip that ‘fits together like Lego’ opens door to semiconductor industry

    36 shares
    Share 14 Tweet 9
  • Study finds increasingly popular oral nicotine pouches do little to curb smokers’ cravings

    35 shares
    Share 14 Tweet 9
  • SMART researchers pioneer novel microfluidic method to optimise bone marrow stem cell extraction for advanced cell therapies

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

ASH: Targeted oral therapy reduced disease burden and improved symptoms for patients with rare blood disorder

TTUHSC’s ARPA-H membership will spur innovation, improve access for West Texas patients

Tracing how the infant brain responds to touch with near-infrared spectroscopy

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 58 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In