• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, May 21, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Distinct classes of fibroblasts in tumors play opposing roles, promoting or restraining pancreatic cancer growth

Bioengineer by Bioengineer
March 30, 2022
in Cancer
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

HOUSTON ― Researchers at The University of Texas MD Anderson Cancer Center have discovered that two distinct classes of cancer-associated fibroblasts (CAFs) accumulate in the pancreatic tumor microenvironment and play opposing roles to promote and restrain pancreatic cancer development.

Raghu Kalluri, M.D., Ph.D.

Credit: MD Anderson Cancer Center

HOUSTON ― Researchers at The University of Texas MD Anderson Cancer Center have discovered that two distinct classes of cancer-associated fibroblasts (CAFs) accumulate in the pancreatic tumor microenvironment and play opposing roles to promote and restrain pancreatic cancer development.

The preclinical findings suggest that appropriately targeting these unique CAF populations may offer strategies to improve the use of other treatments, such as chemotherapy and immunotherapy. The results were published today in Cancer Discovery, a journal of the American Association for Cancer Research.

“Cancer-associated fibroblasts are known to regulate cancer progression, but targeting these cells in pancreatic cancer has largely failed to improve patient outcomes and has, in some cases, worsened response,” said lead author Kathleen McAndrews, Ph.D., postdoctoral fellow in Cancer Biology. “Our findings provide the first evidence of the functional heterogeneity of CAFs in pancreatic cancer that may explain the variations in patient outcomes.”

Fibroblasts, a type of cell found in connective tissue, are involved in important biological processes, such as wound repair. Cancer-associated fibroblasts are those that accumulate in tumors. These cells can be found in large numbers in pancreatic cancers, but their precise role in cancer development had remained unclear.

The researchers performed single-cell RNA sequencing to analyze gene expression and clarify the types of CAFs present in pancreatic tumors. They identified two distinct subsets of CAFs marked by expression of fibroblast activation protein (FAP) and alpha-smooth muscle actin (αSMA).

Interestingly, the researchers found that expression of these proteins in treatment-naïve human tumor samples correlated with eventual outcomes. Increased expression of αSMA was associated with significantly improved overall survival (OS), whereas elevated FAP levels were associated with significantly decreased OS.

Using novel mouse models, the researchers demonstrated that FAP+ and αSMA+ CAFs play distinct and opposing roles in the tumor microenvironment. Loss of FAP+ cells suppressed tumor progression and improved OS, suggesting these cells act to promote tumor development.

Conversely, loss of αSMA+ fibroblasts resulted in more aggressive tumors and shorter OS, indicating that these cells work to block pancreatic cancer progression.

Loss of FAP+ vs. αSMA+ cells resulted in distinct gene expression changes in the tumor, resulting in altered regulation of various cancer-associated pathways and different accumulation of immune cells in the tumor microenvironment.

To clarify the distinct roles of FAP+ and αSMA+ cells, the research team also analyzed secreted proteins that may affect the tumor and surrounding cells. The immune signaling protein interleukin 6 (IL-6) is produced by both classes of CAFs. Loss of IL-6 in αSMA+ cells, but not FAP+ cells, improved responses to chemotherapy and immunotherapy with significantly improved OS.

These results are indicative of the complex and heterogeneous roles of these different classes of CAFs, explained senior author Raghu Kalluri, M.D., Ph.D., professor and chair of Cancer Biology.

“This is a new discovery that helps move the field forward, with a new appreciation of the biology of pancreatic cancer and possible strategies for therapeutic interventions,” Kalluri said. “Our next steps are to identify therapies that can target the tumor promoting fibroblasts while sparing the sum beneficial responses of our body in its effort to fight cancer.”

McAndrews led the study together with Yang Chen, Ph.D., and J. Kebbeh Darpolor, Ph.D. A full list of collaborating authors and their disclosures can be found with the paper here.

This research was supported primarily by the Cancer Prevention and Research Institute of Texas (CPRIT) (RP150231) with additional funding from the National Institutes of Health/National Cancer Institute (UL1TR000371, P01CA117969, P30CA016672), the Sid W. Richardson Foundation, the American Legion Auxiliary Fellowship and Ergon Foundation Postdoctoral Fellowships.

– 30 –



Journal

Cancer Discovery

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Identification of Functional Heterogeneity of Carcinoma-Associated Fibroblasts with Distinct IL-6 Mediated Therapy Resistance in Pancreatic Cancer

Article Publication Date

29-Mar-2022

COI Statement

McAndrews led the study together with Yang Chen, Ph.D., and J. Kebbeh Darpolor, Ph.D. A full list of collaborating authors and their disclosures can be found with the paper here.

Share12Tweet7Share2ShareShareShare1

Related Posts

James Bibb

Novel preclinical drug could have potential to combat depression, brain injury and cognitive disorders

May 20, 2022
Oncotarget | Anti-Cancer Drug Profiling With CancerOmicsNet

Oncotarget | Anti-cancer drug profiling with CancerOmicsNet

May 19, 2022

New CMJ Review explores the metabolic dysfunction associated fatty liver disease

May 19, 2022

Aging-US: Hallmarks of cancer and hallmarks of aging reviewed

May 18, 2022

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Violence/CriminalsUniversity of WashingtonVaccineVehiclesWeather/StormsWeaponryVirusUrbanizationVaccinesUrogenital SystemVirologyZoology/Veterinary Science

Recent Posts

  • Long-hypothesized ‘next generation wonder material’ created for first time
  • Organic farming or flower strips – which is better for bees?
  • Haptics device creates realistic virtual textures
  • Researchers unveil a secret of stronger metals
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....