• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, March 23, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Development of a self-resonant smart energy harvester

Bioengineer by Bioengineer
February 20, 2023
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The Internet of Things (IoT) requires the installation free of time and space, therefore, needs independent power sources that are not restricted by batteries or power lines. Energy harvesting technology harvests wasted energy such as vibration, heat, light, and electromagnetic waves from everyday settings, such as automobiles, buildings, and home appliances, and converts it into electrical energy. Energy harvesters can generate sufficient electricity to run small electronic devices by harvesting ambient energy sources without an external power supply.

Figure 1

Credit: Korea Institute of Science and Technology

The Internet of Things (IoT) requires the installation free of time and space, therefore, needs independent power sources that are not restricted by batteries or power lines. Energy harvesting technology harvests wasted energy such as vibration, heat, light, and electromagnetic waves from everyday settings, such as automobiles, buildings, and home appliances, and converts it into electrical energy. Energy harvesters can generate sufficient electricity to run small electronic devices by harvesting ambient energy sources without an external power supply.

The Korea Institute of Science and Technology (KIST, President Seok Jin Yoon) announced that Dr. Hyun-Cheol Song’s research team at the Electronic Materials Research Center developed an autonomous resonance tuning (ART) piezoelectric energy harvester that autonomously adjusts its resonance according to the surrounding environment. The developed energy harvester can tune its own resonance over a broad bandwidth of more than 30 Hz, and convert the absorbed vibration energy into electrical energy.

The energy harvesting process that converts vibration into electrical energy inevitably causes a mechanical energy loss, which leads to low energy conversion efficiency. This problem can be solved by using the resonance phenomenon in which the vibration amplifies when the natural frequency of an object and the frequency of the vibration match. However, while the natural frequency of the energy harvester is fixed, the various vibrations we experience in our everyday settings have different ranges of frequency. For this reason, the natural frequency of the harvester must be adjusted to the usage environment every time in order to induce resonance, making it difficult to put into practical use.

Accordingly, the KIST research team developed a specially designed energy harvester that can tune itself to the surrounding frequency without a separate electrical device. When the energy harvester senses the vibration of the surroundings, an adaptive clamping system (tuning system) attached to the harvester modulates its frequency to the same frequency as the external vibration, thus enabling resonance. As a result, it was possible to quickly achieve resonant frequency tuning within 2 seconds, continuously generating electricity in a broad bandwidth of more than 30Hz.

For the real-world validation of the ART function, this energy harvester equipped with a tuning system was mounted on a driving vehicle. Unlike piezoelectric energy harvesters that have been introduced in preceding studies, it successfully drove a wireless positioning device without a battery in an environment where the vibration frequency continuously changed. Dr. Song (KIST), who led this study, said, “This result suggests that energy harvesters using vibrations can be applied to our real life soon. It is expected to be applicable as an independent power source for wireless sensors, including the IOT, in the future.”

 

###

KIST was established in 1966 as the first government-funded research institute in Korea. KIST now strives to solve national and social challenges and secure growth engines through leading and innovative research. For more information, please visit KIST’s website at https://eng.kist.re.kr/

This research was carried out as a KIST major project supported by the Ministry of Science and ICT (Minister Jong-ho Lee), and as an energy technology development project of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) supported by the Ministry of Trade, Industry and Energy (Minister Chang-yang Lee). The results of this study were published as a front cover in the issue of Advanced Science, an international journal in the energy field.

 



Journal

Advanced Science

DOI

10.1002/advs.202205179

Article Title

Autonomous Resonance-Tuning Mechanism for Environmental Adaptive Energy Harvesting

Article Publication Date

28-Nov-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Guenevere Chen

UTSA researchers exploit vulnerabilities of smart device microphones and voice assistants

March 23, 2023
Hydrostatic Pressure-Enabled Tunable Singlet Fission Materials

Pressure-based control enables tunable singlet fission materials for efficient photoconversion

March 23, 2023

New wood-based technology removes 80% of dye pollutants in wastewater

March 23, 2023

A higher dose of magnesium each day keeps dementia at bay

March 23, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    64 shares
    Share 26 Tweet 16
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    42 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

UTSA researchers exploit vulnerabilities of smart device microphones and voice assistants

Pressure-based control enables tunable singlet fission materials for efficient photoconversion

New wood-based technology removes 80% of dye pollutants in wastewater

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In