• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, March 28, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Development of a photonic dispersion solver

Bioengineer by Bioengineer
March 10, 2023
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An exponential increase in the amount of information required in society is making the development of new optoelectronic devices increasingly important. Recently, photonic crystals have emerged as an alternative to overcome the limitations of conventional photonic devices thanks to their ability to control photons freely in microscopic space to introduce the next generation of highly integrated devices. A research team at POSTECH has developed a photonic dispersion solver that may act as the foundation of studies on photonic crystals.

Figure 1

Credit: POSTECH

An exponential increase in the amount of information required in society is making the development of new optoelectronic devices increasingly important. Recently, photonic crystals have emerged as an alternative to overcome the limitations of conventional photonic devices thanks to their ability to control photons freely in microscopic space to introduce the next generation of highly integrated devices. A research team at POSTECH has developed a photonic dispersion solver that may act as the foundation of studies on photonic crystals.

 

Professor Junsuk Rho (Department of Mechanical Engineering and Department of Chemical Engineering) at POSTECH along with a team from Gwangju Institute of Science and Technology (GSIT) led by Assistant Professor Minkyung Kim have developed and released a coupled dipole method-based photonic dispersion solver (CDPDS) online for free. The research results were featured in Computer Physics Communications, one of the most prestigious academic journals in the fields of computational physics and computer engineering.

 

Research on topological photonics requires a variety of simulations, including band analysis of a photonic crystal, calculation of boundary band dispersion between two different photonic crystals, and analytic computation of topological phases using dielectric structures of photonic crystals. These requirements have made it necessary to introduce different simulation settings and use post-treatment computation, which can deter the initiation of research.

 

To make research on topological photonics less elusive, the team has developed and released a program online that is equipped with an intuitive graphical user interface (GUI) while making all necessary computations possible even without separate post-treatment.

 

The coupled dipole method-based photonic dispersion solver (CDPDS) that the team developed provides computation of band dispersions and topological phases of one-dimensional and two-dimensional photonic crystals. Tests have shown that the CDPDS can offer fast computation by making the basic structure, a photonic crystal, resemble a dipole. Moreover, it possesses a GUI, making it accessible to general users who are not familiar with computer programming, and provides several useful built-in options for users. Therefore, the method can be used as a toy model to rapidly compute photonic dispersions or to model the photonic dispersion properties of a complex system.

 

The study was conducted with the support from the POSCO-POSTECH-RIST Convergence Research Center program funded by POSCO, the Pioneer Program of Future Technology of the National Research Foundation of Korea under the Ministry of Science and ICT, the Global Frontier Project, the Mid-career Researcher Program, the Future Research Center Program, and the Sejong Science Fellowship.



Journal

Computer Physics Communications

DOI

10.1016/j.cpc.2022.108493

Article Title

CDPDS: Coupled dipole method-based photonic dispersion solver

Share12Tweet8Share2ShareShareShare2

Related Posts

Cloud tomography

New method for fast, efficient and scalable cloud tomography

March 28, 2023
A series of studies reveal the molecular mechanisms of neurological and cardiovascular diseases

Molecular mechanisms of disease pathophysiology: Journal of Pharmaceutical Analysis articles provide novel insights

March 28, 2023

Significant disparities in breast cancer care persist, but surgeons can drive change

March 28, 2023

SwRI creates innovative, efficient hydrogen compressor for FCEV refueling stations

March 28, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    66 shares
    Share 26 Tweet 17
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    43 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New method for fast, efficient and scalable cloud tomography

Molecular mechanisms of disease pathophysiology: Journal of Pharmaceutical Analysis articles provide novel insights

Significant disparities in breast cancer care persist, but surgeons can drive change

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In