• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, January 30, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Danish researchers aim to spin artificial nerve fibres with new technology

Bioengineer by Bioengineer
January 23, 2023
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Multiple sclerosis is an autoimmune disease in which the body’s own immune cells attack myelin in the brain and spinal cord. Myelin or the myelin sheath is a protective layer of fat that insulates nerve fibres, much like plastic around an electrical cord. The sheath makes sure that nerve impulses are transferred quickly through the body.

Associate Professor Menglin Chen

Credit: Aarhus University, AU Photo

Multiple sclerosis is an autoimmune disease in which the body’s own immune cells attack myelin in the brain and spinal cord. Myelin or the myelin sheath is a protective layer of fat that insulates nerve fibres, much like plastic around an electrical cord. The sheath makes sure that nerve impulses are transferred quickly through the body.

When myelin is broken down, the impulses are either transferred more slowly or not at all, and this leads to functional impairment, or even loss for the patient.

Myelin in the central nervous system can be restored via remyelination by special cells in the brain called oligodendrocytes. This process stops working effectively with age though. Today, multiple sclerosis can only be delayed by medication.

However, a new research project at Aarhus University is aiming for a radical new form of treatment for this hereditary and serious disease. The aim of the project is to use electro-spun fibres to establish new, artificial, myelinated nerve fibres.

“We’re building a top-down model via so-called electrohydrodynamic spinning; a very versatile, but complex nanotechnological process that is combined with microfluidics technology for this project. The objective is to spin complete, myelinated nerve Impulse transmission pathways down to nanoscale,” says Associate Professor Menglin Chen from the Department of Biological and Chemical Engineering.

She goes on:

“The biggest challenges in the project are to get the combination of technologies to work and to develop a gating system to ensure that the fibres are formed correctly. Next, an electrophysiological study of the conductivity of the fibres is required to ensure that they have the right impulse conductivity.”

For this project, Menglin Chen aims to spin nerve fibres at cellular size with a fully formed myelin sheath. She has just received a grant of DKK 2 million from the Lundbeck Foundation’s LF Experiment programme, which supports unique, ground-breaking research ideas with potential to transform our understanding of an important field of research.

“It’s the first time anyone has tried to spin artificial nerve fibres using this method, but I’m optimistic. The project also provides important insight into the pathological mechanisms that follow from multiple sclerosis at single nerve-fibre scale, and I hope that we will have a completely new diagnosis and treatment method in a few years,” she says.

The research project is scheduled for two years, and the project will start in the spring of 2023. 



Share12Tweet8Share2ShareShareShare2

Related Posts

Drugs to quit smoking

Machine learning identifies drugs that could potentially help smokers quit

January 30, 2023
The team’s new sensor makes use of PEDOT-Cl-coated cotton sandwiched between electrodes.

Under pressure: Breakthrough new material solves problem of wearable sensors

January 30, 2023

Marburg vaccine shows promising results in first-in-human study

January 30, 2023

A landmark solid material that “upconverts” visible light photons to UV light photons changes how we utilize sunlight

January 30, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    64 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Machine learning identifies drugs that could potentially help smokers quit

Under pressure: Breakthrough new material solves problem of wearable sensors

Marburg vaccine shows promising results in first-in-human study

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 43 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In