• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, January 29, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Coral reefs are spatially distributed to maximize the availability of resources

Bioengineer by Bioengineer
December 21, 2022
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists from the Institut de Ciències del Mar (ICM), the Universitat de Barcelona, the National Oceanography Centre (NOC) and other European research centres have found that cold-water coral reefs -similar to those located in tropical areas but found at greater depths- are distributed in a specific way throughout space to maximize the availability of resources, acquired through capturing particles of organic matter that are transported by marine currents.

Schematic representation of the expected reef growth

Credit: Schematic representation of the expected reef growth, together with the positive and negative
feedbacks occurring on the upstream and downstream sides of the reef structure. Green and red arrows indicate
the presence of positive and negative feedbacks respectively. Orange dots represent Artemia salina nauplii. Initial
nubbin location corresponds to that of the present experiment.

Scientists from the Institut de Ciències del Mar (ICM), the Universitat de Barcelona, the National Oceanography Centre (NOC) and other European research centres have found that cold-water coral reefs -similar to those located in tropical areas but found at greater depths- are distributed in a specific way throughout space to maximize the availability of resources, acquired through capturing particles of organic matter that are transported by marine currents.

The details of this research are reported in a study published recently in the journal Scientific Reports, which has modelled the hydrodynamic factors that control the growth and morphological evolution of these reefs, considered hotspots of biodiversity in deep environments. This is a major breakthrough, since until now very little was known about the processes that induce the formation of the complex three-dimensional structures that characterize them.

To carry out the study, the authors designed a complex experiment by placing an artificial reef with live corals in a tank and exposing it for months to unidirectional currents, thus recreating the physical characteristics in which these reefs are found in deep sea environments.

Thanks to this, they were able to test a long-standing hypothesis: that corals grow towards the prevailing current. In this sense, the results of the experiment revealed that the colonies at the frontal part of the reef, and therefore more exposed to the currents, grew much more and showed a lower degree of stress.

In addition, the team observed greater growth in colonies located at some distance from the front of the reef, where the speed and direction of bottom currents are re-established and allow other reefs to develop. These patterns strengthen the idea that corals are able to self-organize in space to take better advantage of available resources.

“Our results show that the presence of a reef causes a deviation of the bottom currents above it, creating a shaded area at the back where the exchange of oxygen and ions involved in the calcification of corals decreases, and through which much of the food that is in suspension does not pass. This is reflected in the reduced growth and in the expression of stress-related proteins in the corals that inhabit these zones,” explains Guillem Corbera, the lead author of the study.

Claudio Lo Iacono, co-author of the study, points out that “we have been able to observe the growth of a reef by studying the processes of interaction between its morphology and the surrounding hydrodynamics, which even affect the physiological processes of the colonies themselves. Therefore, we believe that these bio-constructions can self-organize in space and time”.

Knowledge about cold-water coral reefs is important because of their uniqueness and key role in the ocean, where they act as architects of deep ecosystems and serve as refuges for many species. In addition, the analysis of their chemical composition provides insight into their past climate, as this depends mainly on climatic oscillations associated with ice ages, changes in sea surface productivity and sea level variations.



Journal

Scientific Reports

DOI

10.1038/s41598-022-24711-7

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Local-scale feedbacks influencing cold-water coral growth and subsequent reef formation

Article Publication Date

27-Nov-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

World-first guidelines created to help prevent heart complications in children during cancer treatment

World-first guidelines created to help prevent heart complications in children during cancer treatment

January 29, 2023
Schematic of solar wind charge exchange events.

Simulations reproduce complex fluctuations in soft X-ray signal detected by satellites

January 28, 2023

Measles virus ‘cooperates’ with itself to cause fatal encephalitis

January 27, 2023

A new Assay screening method shows therapeutic promise for treating auto-immune disease

January 27, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    64 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

World-first guidelines created to help prevent heart complications in children during cancer treatment

Simulations reproduce complex fluctuations in soft X-ray signal detected by satellites

Measles virus ‘cooperates’ with itself to cause fatal encephalitis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In