• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, March 23, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

CityU develops wireless, soft e-skin for interactive touch communication in the virtual world

Bioengineer by Bioengineer
February 23, 2023
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Sensing a hug from each other via the internet may be a possibility in the near future. A research team led by City University of Hong Kong (CityU) recently developed a wireless, soft e-skin that can both detect and deliver the sense of touch, and form a touch network allowing one-to-multiuser interaction. It offers great potential for enhancing the immersion of distance touch communication.

Flexible e-skin

Credit: © Li, D. et al. https://www.science.org/doi/10.1126/sciadv.ade2450

Sensing a hug from each other via the internet may be a possibility in the near future. A research team led by City University of Hong Kong (CityU) recently developed a wireless, soft e-skin that can both detect and deliver the sense of touch, and form a touch network allowing one-to-multiuser interaction. It offers great potential for enhancing the immersion of distance touch communication.

“With the rapid development of virtual and augmented reality (VR and AR), our visual and auditory senses are not sufficient for us to create an immersive experience. Touch communication could be a revolution for us to interact throughout the metaverse,” said Dr Yu Xinge, Associate Professor in the Department of Biomedical Engineering (BME) at CityU.

While there are numerous haptic interfaces in the market to simulate tactile sensation in the virtual world, they provide only touch sensing or haptic feedback. The uniqueness of the novel e-skin is that it can perform self-sensing and haptic reproducing functions on the same interface.

Skin-patch device provides integrated functions for touch sensing and haptic reproduction

The e-skin contains 16 flexible actuators (cum sensors) in a 4 X 4 array, a microcontroller unit (MCU), a Bluetooth module and other electronics on a flexible circuit board. All the components are combined in a 7cm X 10cm, 4.2mm-thick skin-patch-like device.

The button-liked actuator, comparable in size to a HK 10-cent coin, serves as the core part of the e-skin. Each of the actuators consists of a flexible coil, a soft silicone support, a magnet and a thin polydimethylsiloxane (PDMS) film, which perform the touch sensing and haptic feedback functions based on electromagnetic induction. 

Once the actuator is pressed and released by an external force, a current is induced to provide electrical signals for tactile sensation to a corresponding actuator in another e-skin patch. The deeper the sender presses, the stronger and longer the sensation generated on the other e-skin.

The electrical signal generated from the actuators is converted to a digital signal by an analog-to-digital converter on the circuit board of the e-skin patch. The data is then transmitted to the actuators on another e-skin via Bluetooth.

When the signal is received, a current is induced to reproduce the haptic feedback on the receiver’s e-skin through mechanical vibration. The process can be reversed to deliver vibrations from the receiver’s e-skin to the corresponding actuator of the sender’s. 

Although each actuator can perform only one task at a time, the rest of the 15 actuators on the e-skin can supplement each other and perform the sensing or haptic reproducing function, allowing the e-skin patch to achieve bidirectional touch transmission simultaneously.

Touch IoT offers a wide range of potential applications

“Our e-skin can communicate with Bluetooth devices and transmit data through the internet with smartphones and computers to perform ultralong-distance touch transmission, and to form a touch Internet of Things (IoT) system, where one-to-one and one-to-multiple touch delivery could be realised. Friends and family in different places could use it to ‘feel’ each other,” said Dr Yu. “This form of touch overcomes the limitations of space and greatly reduces the sense of distance in human communication.”

Next, the research team will focus on practical applications for people with visually impairment, who could wear the e-skin to gain remote directional guidance and read Braille messages. 

The research findings were published in the scientific journal Science Advances under the title “Touch IoT enabled by wireless self-sensing and haptic-reproducing electronic skin”.

The first co-authors are Dr Li Dengfeng, then-postdoc on Dr Yu’s research team, Dr Yao Kuanming, postdoc in BME, Mr Zhou Jingkun and Mr He Jiahui, both PhD students in BME at CityU, and Ms Liu Sitong from Dalian University of Technology (DUT). The corresponding authors are Dr Yu, Professor Xie Zhaoqian from DUT, and Dr Dai Yuan from Tencent Robotics X. The research was supported by CityU and the Hong Kong Research Grants Council. 

https://www.cityu.edu.hk/research/stories/2023/02/23/cityu-develops-wireless-soft-e-skin-interactive-touch-communication-virtual-world



Journal

Science Advances

DOI

10.1126/sciadv.ade2450

Method of Research

Experimental study

Subject of Research

People

Article Title

Touch IoT enabled by wireless self-sensing and haptic-reproducing electronic skin

Article Publication Date

23-Dec-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Jared Smith shakes hands with Susan Hubbard

ORNL malware ‘vaccine’ generator licensed for Evasive.ai platform

March 23, 2023
Oil well near a public park

Black, Latinx Californians face highest exposure to oil and gas wells

March 23, 2023

UChicago scientists discover easy way to make atomically-thin metal layers for new technology

March 23, 2023

Climate change threatens global fisheries

March 23, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    64 shares
    Share 26 Tweet 16
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    42 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

ORNL malware ‘vaccine’ generator licensed for Evasive.ai platform

Black, Latinx Californians face highest exposure to oil and gas wells

UChicago scientists discover easy way to make atomically-thin metal layers for new technology

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In