• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, January 29, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Chemists developed cholesterol testing system

Bioengineer by Bioengineer
November 7, 2022
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists at the Ural Federal University (UrFU) have developed a new sensor device for determining cholesterol levels in the blood. The system does not use protein compounds, namely enzymes. Chemists replaced them with an inorganic analogue – copper chloride. This allowed to make the process of creating cholesterol meters cheaper, to make blood testing easier, faster and more accessible. The results of the study are presented in the Journal of Electroanalytical Chemistry.

Printed chip

Credit: Rodion Narudinov / UrFU

Scientists at the Ural Federal University (UrFU) have developed a new sensor device for determining cholesterol levels in the blood. The system does not use protein compounds, namely enzymes. Chemists replaced them with an inorganic analogue – copper chloride. This allowed to make the process of creating cholesterol meters cheaper, to make blood testing easier, faster and more accessible. The results of the study are presented in the Journal of Electroanalytical Chemistry.

“Cholesterol determination is currently performed using colorimetry, chromatography, and enzymes. However, these methods use either extremely aggressive reagents or complex and expensive equipment, or – as recognizing and sensitive elements that determine cholesterol levels – enzymes – biological molecules that are extracted from living organisms. For example, the enzyme cholesterol oxidase is produced by some species of bacteria. Also enzymes are natural polymers, proteins, therefore, they are prone to denaturation and require certain storage conditions, temperature and acidity regimes. We decided to select a non-biological analogue of this enzyme to make the process of cholesterol analysis cheaper, easier and faster. One of the most affordable options is copper chloride, which we first discovered to be highly sensitive to cholesterol,” explains Andrei Okhokhonin, Associate Professor at the UrFU Department of Analytical Chemistry.

To measure cholesterol levels with the new device, a small amount of blood is enough. The blood is placed in an analyzing chip containing a solution of copper chloride in acetonitrile. An electrode is integrated into this chip, which is connected to a voltammetric analyzer that gives the results of the analysis. The advantage of the new chip analyzing cholesterol levels is also that it contains magnetic nanoparticles with polymers with molecular imprints that selectively sorb cholesterol, screening out any other substances characteristic of blood composition.

“Molecular imprinted polymers are needed to effectively separate cholesterol from other substances in the blood. After trying several options, we chose ethylene glycol dimethacrylate as the crosslinking agent and vinylpyridine as the functional monomer. The polymer synthesized on the surface of magnetic nanoparticles effectively sorbs cholesterol, so we can talk about high selectivity of analysis, as no other substances interfere,” emphasizes Andrei Okhokhonin.

The microfluidic chip, in which all elements of the system are integrated, is printed on a 3D printer, which also facilitates the production process of the device, making it faster. Scientists note that the first test they conducted not on biological samples, but on model solutions that mimic blood serum. The next stage of the researchers’ work is to test the system on real blood samples.

Scientists has been conducting research for several years to develop enzyme-free sensors for determining a number of biologically important substances, such as glucose, urea, creatinine, and others.

Reference

Total cholesterol contained in the body within normal limits is an important substance, without which the proper functioning of the body is impossible. In a certain amount, it can be found in all body fluids and tissues. Cholesterol is an obligatory component of cell membranes, it is responsible for the ordering, compactness and stability of the lipid biolayer. In addition, it is involved in regulating the permeability of cell walls, determining which molecules can penetrate the cell and which cannot.

Elevated blood cholesterol is a symptom of a number of diseases, such as atherosclerosis, hereditary diseases, chronic kidney failure, nephroptosis, hypertension, liver disease, pancreatic diseases. 



Journal

Journal of Electroanalytical Chemistry

DOI

10.1016/j.jelechem.2022.116853

Article Title

A new electrocatalytic system based on copper (II) chloride and magnetic molecularly imprinted polymer nanoparticles in 3D printed microfluidic flow cell for enzymeless and Low-Potential cholesterol detection

Share12Tweet8Share2ShareShareShare2

Related Posts

World-first guidelines created to help prevent heart complications in children during cancer treatment

World-first guidelines created to help prevent heart complications in children during cancer treatment

January 29, 2023
Schematic of solar wind charge exchange events.

Simulations reproduce complex fluctuations in soft X-ray signal detected by satellites

January 28, 2023

Measles virus ‘cooperates’ with itself to cause fatal encephalitis

January 27, 2023

A new Assay screening method shows therapeutic promise for treating auto-immune disease

January 27, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    64 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

World-first guidelines created to help prevent heart complications in children during cancer treatment

Simulations reproduce complex fluctuations in soft X-ray signal detected by satellites

Measles virus ‘cooperates’ with itself to cause fatal encephalitis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In