• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, July 1, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Cancer: The double advantage of killer T-cells

Bioengineer by Bioengineer
June 9, 2022
in Cancer
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

To grow, tumours rely on a specific structure, the tumour stroma. This includes blood vessels, which provide the nutrients necessary for the multiplication of diseased cells, and of lymphatic vessels, through which they migrate to metastasise. The development of lymphatic vessels —  a mechanism known as lymphangiogenesis —  in and around a tumour is therefore of poor prognosis. A team from the University of Geneva (UNIGE) has demonstrated how  «killer» T-cells used in immunotherapy to eliminate cancer cells can also destroy tumour lymphatic vessels, thus greatly reducing the risk of metastasis. Exploiting this synergistic effect could increase the effectiveness of treatments against cancers where lymphangiogenesis is important, such as colorectal cancer, melanoma, or breast cancer. These results can be read in the journal Science Advances. 

Cancer: the double advantage of killer T-cells

Credit: UNIGE – Robert Pick / Stéphanie Hugues

To grow, tumours rely on a specific structure, the tumour stroma. This includes blood vessels, which provide the nutrients necessary for the multiplication of diseased cells, and of lymphatic vessels, through which they migrate to metastasise. The development of lymphatic vessels —  a mechanism known as lymphangiogenesis —  in and around a tumour is therefore of poor prognosis. A team from the University of Geneva (UNIGE) has demonstrated how  «killer» T-cells used in immunotherapy to eliminate cancer cells can also destroy tumour lymphatic vessels, thus greatly reducing the risk of metastasis. Exploiting this synergistic effect could increase the effectiveness of treatments against cancers where lymphangiogenesis is important, such as colorectal cancer, melanoma, or breast cancer. These results can be read in the journal Science Advances. 

 

The lymphatic system is the main route through which cancer cells spread in the body. They first colonise the sentinel lymph nodes, then move to give rise to secondary metastases elsewhere in the body. However, therapies to block tumour lymphangiogenesis have so far been disappointing. “Indeed, they also represent the route for some immune cells, the dendritic cells, to exit from the tumor and activate anti-tumoral killer-T cells,” explains Stéphanie Hugues, Associate Professor in the Department of Pathology and Immunology and in the Geneva Centre for Inflammation Research of the UNIGE Faculty of Medicine, who led this work. “We must therefore find a balance in order to inhibit this mechanism without blocking it completely, and thus decipher its mode of action in detail”.

 

Identifying a unique target

To do this, the scientists used so-called ‘‘killer’’ T lymphocytes used in immunotherapy protocols. ‘‘These T-cells are immune cells specifically activated in labs to eliminate tumour cells, before being injected to patients,’’ explains Laure Garnier, a junior lecturer in Stéphanie Hugues’ laboratory and first author of this work. ‘‘Here, we injected them into mice suffering from melanoma. And if, as expected, the killer lymphocytes destroyed the tumour cells, they also attacked the lymphatic endothelial cells that line the lymphatic vessels.”

Indeed, the destruction of cancer cells leads to the release of tumour antigens. These small cancerous parts are then captured by the lymphatic endothelial cells which, having become carriers of tumour identification markers, are also recognised as enemies by the T-cells that attack them. This mechanism therefore disrupts the tumour-associated lymphatic system to significantly reduce the risk of metastasis without blocking it entirely.

The research team confirmed these results with other approaches, such as vaccination, which aims to strengthen the immune system. ‘‘We also observed the destruction of lymphatic endothelial cells, and consequently a decrease in lymph node metastases, thus limiting the risk of secondary metastases. Moreover, as this action only takes place in the tumour microenvironment, no systemic effect is to be feared,’’ emphasises Laure Garnier.

 

Increasing synergies by choosing the right weapons

How can this effect be strengthened without jeopardising the action of the immune cells, which need the lymphatic vessels to enter the tumour? There are several options, such as intervening once immunity has been established, or in conjunction with therapeutic protocols where the immune system is so strong that limiting lymphangiogenesis would not impair its function. ‘‘Nevertheless, our results show that the most effective approach is to use killer T-cells generated in the laboratory, and therefore ready to attack, in order to bypass the first phase of activation, which can prove problematic,’’ says Stéphanie Hugues.

 

Immunotherapies remain complex and are only used when traditional treatments have proved inconclusive. ‘‘Even though they are very promising, these therapies are not miracle solutions and often cause severe side effects. This is why we want to  understand the smallest biological processes at work,” the authors conclude.



Journal

Science Advances

DOI

10.1126/sciadv.abl5162

Method of Research

News article

Subject of Research

People

Article Title

IFN-γ–dependent tumor-antigen cross-presentation by lymphatic endothelial cells promotes their killing by T cells and inhibits metastasis

Article Publication Date

8-Jun-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Spike protein

Emerging Omicron subvariants BA.2.12.1, BA.4 and BA.5 are inhibited less efficiently by antibodies

July 1, 2022
Edward Cachay, University of California San Diego

Mathematical model helps predict anal cancer risk in persons with HIV infection

July 1, 2022

Scientists unravel the key to colon cancer relapse after chemotherapy

June 30, 2022

Mapping the ‘energy fingerprints’ of lung cancer leads to fundamental treatment rethink

June 30, 2022

POPULAR NEWS

  • Pacific whiting

    Oregon State University research finds evidence to suggest Pacific whiting skin has anti-aging properties that prevent wrinkles

    37 shares
    Share 15 Tweet 9
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers

    35 shares
    Share 14 Tweet 9
  • University of Miami Rosenstiel School selected for National ‘Reefense’ Initiative focusing on Florida and the Caribbean

    35 shares
    Share 14 Tweet 9
  • Mapping the ‘energy fingerprints’ of lung cancer leads to fundamental treatment rethink

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Violence/CriminalsVirologyUrogenital SystemZoology/Veterinary ScienceVaccineUniversity of WashingtonUrbanizationWeather/StormsVehiclesVirusWeaponryVaccines

Recent Posts

  • Hidden in genetics: The evolutionary relationships of two groups of ancient invertebrates revealed
  • “Soft” CRISPR may offer a new fix for genetic defects
  • Emerging Omicron subvariants BA.2.12.1, BA.4 and BA.5 are inhibited less efficiently by antibodies
  • Mathematical model helps predict anal cancer risk in persons with HIV infection
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....