• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, March 21, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Boosting anti-cancer antibodies by reducing their grip

Bioengineer by Bioengineer
February 1, 2023
in Cancer
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

New research from the Centre for Cancer Immunology at the University of Southampton, published ahead of World Cancer Day (4 February), has shown that changing how tightly an antibody binds to a target could improve treatments for cancer.

Illustration of antibodies binding receptors and stimulating them.

Credit: University of Southampton

New research from the Centre for Cancer Immunology at the University of Southampton, published ahead of World Cancer Day (4 February), has shown that changing how tightly an antibody binds to a target could improve treatments for cancer.

Antibodies detect and tag viruses and bacteria so the body’s immune system can destroy them. To help prevent a second infection our immune system fine-tunes these antibodies to have a tighter grip on these targets, known as higher affinity.

Immunotherapy treatments for cancer use the same concept – direct targeting antibodies are designed to find and bind tightly to the cancer cells so the immune system can kill them. These antibody treatments have proved successful for some cancers over the last few years, but many cancer patients still do not respond or become resistant to them.

In a new study, published in Nature, Southampton researchers have shown that a different type of therapeutic antibody, called “immunomodulatory antibodies” are successful in treating cancer when they have a looser grip.

Changing the tightness of binding is known as affinity engineering and the research team believes this could offer an efficient, more flexible, opportunity to treat cancer.

Immunomodulatory antibodies bind to receptors on immune cells rather than tumour cells and work by altering the signals that are transmitted into the immune cells to make them more active and better at killing cancer cells.

In the study, the team examined three separate receptors (CD40, 4-1BB and PD-1), and showed there was better clustering of the receptors and signalling into the immune cells was improved when the binding was looser. For one of these, CD40, it showed better killing of tumour cells.

Professor Mark Cragg, from the Centre for Cancer Immunology, said: “Although the number of approved antibody drugs is continually increasing, with over 100 now in clinic, some patients remain unresponsive to the treatment. Therefore, developing new strategies to super-charge our antibodies through techniques such as affinity engineering is key to providing better treatments for patients.

“Our study suggests that by changing the affinity we can effectively fine tune the antibody to the desired level and activity.

“Importantly, immunomodulatory antibodies target the same receptor on immune cells and so can in theory be used for very many different types of tumours, opening up more treatment opportunities for more people. The main applications currently are in oncology, but in principle the same approach could be used for antibodies treating autoimmune disorders and inflammatory diseases.”

Dr Xiaojie Yu, first author of the study and now assistant professor at the School of Life Sciences at Westlake University, said: “High affinity binding has been the mantra of therapeutic antibody development for decades. The finding that low affinity was conducive to antibody-mediated cellular signalling by the immunomodulatory antibodies presents a powerful tool for developing new and more effective antibodies for treating cancer and autoimmunity.”

The study was funded by Cancer Research UK and the Cancer Immunology Fund, the University’s campaign to support the vital research taking place within the Centre, following the successful campaign to rasie £25million to build the Centre.

Katherine de Retuerto, Associate Director of Development at the University of Southampton, said: “This exciting work is exactly what we hoped would happen when we were fundraising to build the Centre for Cancer Immunology.  The many generous donors whose philanthropy contributed to the Centre, including those who funded a key piece of equipment used in these experiments, should feel great pride at the progress the Southampton team is making.”

Dr Iain Foulkes, Executive Director of Research and Innovation at Cancer Research UK, said: “Cancer is a master of the art of evading the immune system. We need to try many different tactics to help our bodies unmask tumours and attack them.

“Immunomodulatory antibodies are one of the cornerstones of immunotherapy, which is fast becoming a staple treatment in the clinic. But immunotherapy doesn’t always work for everyone, and we need to keep refining it to ensure it gives patients the best chance of a good outcome.

“This research offers an exciting new approach to making antibody treatments work better and in the future we hope to see it reach its full potential in the clinic.”

Ends

Notes to editors

  1. The DOI number for this paper, ‘Reducing affinity as a strategy to boost immunomodulatory antibody agonism’, will be 10.1038/s41586-022-05673-2. Once the paper has been published online, it will be available at the following URL: https://www.nature.com/articles/s41586-022-05673-2. This link will go live after the embargo ends.
     
  2. To receive an embargoed copy of the paper, please contact Peter Franklin, Media Relations, University of Southampton – [email protected] 07748 321087
     
  3. The University of Southampton drives original thinking, turns knowledge into action and impact, and creates solutions to the world’s challenges. We are among the top 100 institutions globally (QS World University Rankings 2023). Our academics are leaders in their fields, forging links with high-profile international businesses and organisations, and inspiring a 22,000-strong community of exceptional students, from over 135 countries worldwide. Through our high-quality education, the University helps students on a journey of discovery to realise their potential and join our global network of over 200,000 alumni. www.southampton.ac.uk
     
  4. For more about the Centre for Cancer Immunology visit: https://www.southampton.ac.uk/youreit/  


Journal

Nature

DOI

10.1038/s41586-022-05673-2

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Reducing affinity as a strategy to boost immunomodulatory antibody agonism

Article Publication Date

1-Feb-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

bisht_jasbir-web-1.jpg

Researchers study the impact of cancer on Hispanic patients and their caregivers

March 20, 2023
photo of researchers

Upgraded tumor model optimizes search for cancer therapies

March 20, 2023

Can ChatGPT be counted on?

March 17, 2023

New combination of drugs works together to reduce lung tumors in mice

March 17, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    61 shares
    Share 24 Tweet 15
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    42 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

3000+ billion tons of ice lost from Antarctic Ice Sheet over 25 years 

Richard McIndoe, PhD, will direct Coordinating Unit for new, national research initiative in diabetes, obesity

For clues to healthy brain aging, look to the Bolivian Amazon

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In