• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, May 25, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Bacterial soundtracks revealed by graphene membrane

Bioengineer by Bioengineer
April 18, 2022
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Have you ever wondered if bacteria make distinctive sounds? If we could listen to bacteria, we would be able to know whether they are alive or not. When bacteria are killed using an antibiotic, those sounds would stop – unless of course the bacteria are resistant to the antibiotic. This is exactly what a team of researchers from TU Delft , led by dr. Farbod Alijani, now have managed to do: they captured low-level noise of a single bacterium using graphene. Now, their research is published in Nature Nanotechnology.

The sound of a single bacterium
Farbod Alijani’s team was originally looking into the fundamentals of the mechanics of graphene, but at a certain point they wondered what would happen if this extremely sensitive material comes into contact with a single biological object. “Graphene is a form of carbon consisting of a single layer of atoms and is also known as the wonder material,” says Alijani. “It’s very strong with nice electrical and mechanical properties, and it’s also extremely sensitive to external forces.”

The team of researchers initiated a collaboration with the nano biology group of Cees Dekker and the nanomechanics group of Peter Steeneken. Together with PhD student Irek Roslon and postdoc Dr. Aleksandre Japaridze, the team ran their first experiments with E. coli bacteria. Cees Dekker: “What we saw was striking! When a single bacterium adheres to the surface of a graphene drum, it generates random oscillations with amplitudes as low as a few nanometers that we could detect. We could hear the sound of a single bacterium!”

Punching a graphene drum with a bacterium
The extremely small oscillations are a result of the biological processes of the bacteria with main contribution from their flagella (tails on the cell surface that propel bacteria). “To understand how tiny these flagellar beats on graphene are, it’s worth saying that they are at least 10 billion times smaller than a boxer’s punch when reaching a punch bag. Yet, these nanoscale beats can be converted to sound tracks and listened to – and how cool is that,” Alijani says.

Graphene for fast detection of antibiotic resistance
This research has enormous implications for the detection of antibiotic resistance. The experimental results were unequivocal: If the bacteria were resistant to the antibiotic, the oscillations just continued at the same level. When the bacteria were susceptible to the drug, vibrations decreased until one or two hours later, but then they were completely gone. Thanks to the high sensitivity of graphene drums, the phenomenon can be detected using just a single cell.

Farbod Alijani: “For the future, we aim at optimizing our single-cell graphene antibiotic sensitivity platform and validate it against a variety of pathogenic samples. So that eventually it can be used as an effective diagnostic toolkit for fast detection of antibiotic resistance in clinical practice.” Peter Steeneken concludes: “This would be an invaluable tool in the fight against antibiotic resistance, an ever- increasing threat to human health around the world.”

More information
Probing nanomotion of single bacteria with graphene drums, I.E. Rosłoń, A. Japaridze, P.G. Steeneken, C. Dekker, F. Alijani,  https://doi.org/10.1038/s41565-022-01111-6
Youtube video: https://www.youtube.com/shorts/DYWX16Orq4c

Contact
Farbod Alijani, [email protected], 015 27 86739
Dimmy van Ruiten, press officer TU Delft, [email protected], 015 27 81588

Bacterium on graphene drum

Credit: Irek Roslon, TU Delft

Have you ever wondered if bacteria make distinctive sounds? If we could listen to bacteria, we would be able to know whether they are alive or not. When bacteria are killed using an antibiotic, those sounds would stop – unless of course the bacteria are resistant to the antibiotic. This is exactly what a team of researchers from TU Delft , led by dr. Farbod Alijani, now have managed to do: they captured low-level noise of a single bacterium using graphene. Now, their research is published in Nature Nanotechnology.

The sound of a single bacterium
Farbod Alijani’s team was originally looking into the fundamentals of the mechanics of graphene, but at a certain point they wondered what would happen if this extremely sensitive material comes into contact with a single biological object. “Graphene is a form of carbon consisting of a single layer of atoms and is also known as the wonder material,” says Alijani. “It’s very strong with nice electrical and mechanical properties, and it’s also extremely sensitive to external forces.”

The team of researchers initiated a collaboration with the nano biology group of Cees Dekker and the nanomechanics group of Peter Steeneken. Together with PhD student Irek Roslon and postdoc Dr. Aleksandre Japaridze, the team ran their first experiments with E. coli bacteria. Cees Dekker: “What we saw was striking! When a single bacterium adheres to the surface of a graphene drum, it generates random oscillations with amplitudes as low as a few nanometers that we could detect. We could hear the sound of a single bacterium!”

Punching a graphene drum with a bacterium
The extremely small oscillations are a result of the biological processes of the bacteria with main contribution from their flagella (tails on the cell surface that propel bacteria). “To understand how tiny these flagellar beats on graphene are, it’s worth saying that they are at least 10 billion times smaller than a boxer’s punch when reaching a punch bag. Yet, these nanoscale beats can be converted to sound tracks and listened to – and how cool is that,” Alijani says.

Graphene for fast detection of antibiotic resistance
This research has enormous implications for the detection of antibiotic resistance. The experimental results were unequivocal: If the bacteria were resistant to the antibiotic, the oscillations just continued at the same level. When the bacteria were susceptible to the drug, vibrations decreased until one or two hours later, but then they were completely gone. Thanks to the high sensitivity of graphene drums, the phenomenon can be detected using just a single cell.

Farbod Alijani: “For the future, we aim at optimizing our single-cell graphene antibiotic sensitivity platform and validate it against a variety of pathogenic samples. So that eventually it can be used as an effective diagnostic toolkit for fast detection of antibiotic resistance in clinical practice.” Peter Steeneken concludes: “This would be an invaluable tool in the fight against antibiotic resistance, an ever- increasing threat to human health around the world.”

More information
Probing nanomotion of single bacteria with graphene drums, I.E. Rosłoń, A. Japaridze, P.G. Steeneken, C. Dekker, F. Alijani,  https://doi.org/10.1038/s41565-022-01111-6
Youtube video: https://www.youtube.com/shorts/DYWX16Orq4c

Contact
Farbod Alijani, [email protected], 015 27 86739
Dimmy van Ruiten, press officer TU Delft, [email protected], 015 27 81588



Journal

Nature Nanotechnology

DOI

10.1038/s41565-022-01111-6

Subject of Research

Cells

Article Title

Probing nanomotion of single bacteria with graphene drums

Article Publication Date

18-Apr-2022

COI Statement

No conflicts of interest reported.

Share12Tweet8Share2ShareShareShare2

Related Posts

Conceptual rendering of University of Louisville's New Vision of Health Campus

UofL to create New Vision of Health Campus for pioneering work to increase health equity

May 25, 2022
Researchers discover the mechanism responsible for information transfer between different regions of the brain

Researchers discover the mechanism responsible for information transfer between different regions of the brain

May 25, 2022

Microsoft Imagine Cup: Jacobs University students win World Championship

May 25, 2022

Why COVID vaccines are deemed non-essential for UK young children

May 25, 2022

POPULAR NEWS

  • Masks

    Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Weather/StormsUrbanizationVaccinesUniversity of WashingtonViolence/CriminalsWeaponryVirologyUrogenital SystemZoology/Veterinary ScienceVirusVehiclesVaccine

Recent Posts

  • UofL to create New Vision of Health Campus for pioneering work to increase health equity
  • Researchers discover the mechanism responsible for information transfer between different regions of the brain
  • Microsoft Imagine Cup: Jacobs University students win World Championship
  • Why COVID vaccines are deemed non-essential for UK young children
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....