• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Tuesday, October 3, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

App-based tool quantifies pesticide toxicity in watersheds; identifies mitigation opportunities

Bioengineer by Bioengineer
August 9, 2023
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Pesticides are a leading source of chemical hazards in aquatic environments. A study published in PLOS Water by Nicol Parker and Arturo A Keller at University of California, Santa Barbara, Santa Barbara, CA, United States and colleagues introduces a new tool to help evaluate toxicity at high resolution and suggests that targeting a small number of pesticides in a few watersheds could significantly reduce aquatic toxicity in California’s agricultural centers.

App-based tool quantifies pesticide toxicity in watersheds; identifies mitigation opportunities

Credit: Parker et al., 2023, PLOS Water, CC-BY 4.0 (https://creativecommons.org/licenses/by/4.0/)

Pesticides are a leading source of chemical hazards in aquatic environments. A study published in PLOS Water by Nicol Parker and Arturo A Keller at University of California, Santa Barbara, Santa Barbara, CA, United States and colleagues introduces a new tool to help evaluate toxicity at high resolution and suggests that targeting a small number of pesticides in a few watersheds could significantly reduce aquatic toxicity in California’s agricultural centers.

Reducing pesticide toxicity in watersheds is limited by the ability to quantify pesticide use, toxicity, and impacts over spatial and temporal scales. In order to provide a framework for targeting pesticide reductions, the authors developed the Environmental Release Tool (ERT) using watershed data from the US Geological Survey. ERT is a web and desktop application that summarizes pesticide applications and toxicity by watershed. They used ERT to analyze pesticide use across 140 California watersheds receiving agricultural pesticide applications. The ERT was able to quantify the toxicity released to aquatic taxa across these watershed areas, representing approximately 20 percent of the pesticide mass in the United States and covering hundreds of commodities.

The ERT demonstrated that mitigation actions on just two pesticides and sixteen site types would affect about 90 percent of applied toxicity to fish, aquatic invertebrates, nonvascular plants, and vascular plants in California’s agricultural landscapes. The study also showed that 20 percent of agricultural watersheds account for 80 percent of applied toxicity, suggesting that targeting a small number of watersheds receiving high concentrations of pesticides could be effective in reducing overall applied chemical toxicity. The tool has some important limitations—for example, it does not predict risks to human health or watershed ecologies, only opportunities to decrease pesticide toxicity.

According to the authors, “Our study developed the Environmental Release Tool (ERT) to provide an integrated framework for targeting pesticide toxicity reductions. Results indicate that the ERT can be a valuable tool for identifying pesticide environmental toxicity and should be considered in future agricultural management strategies”.

The authors add: “The applied toxicity of agricultural pesticides in California is dominated by a handful of pesticides, and a few crops like almonds and other nuts. Careful selection of less toxic pesticides for the same crops can drastically reduce overall applied toxicity in California, and probably around the world.”

#####

Environmental Release Tool link: https://nicol-parker.shinyapps.io/Environmental-Release-Tool/

In your coverage please use this URL to provide access to the freely available article in PLOS Water: https://journals.plos.org/water/article?id=10.1371/journal.pwat.0000124

Citation: Parker N, Larsen A, Banerjee P, Keller AA (2023) Leveraging high spatiotemporal resolution data of pesticides applied to agricultural fields in California to identify toxicity reduction opportunities. PLOS Water 2(8): e0000124. https://doi.org/10.1371/journal.pwat.0000124

Author Countries: US

Funding: This project was funded by the California Sea Grant Delta Science Fellowship (SEADSR4/183BCA/416701/440000 to NP). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Nicol Parker and Priyanka Banerjee were funded by the California Sea Grant Delta Science Fellowship.



Journal

PLOS Water

DOI

10.1371/journal.pwat.0000124

Method of Research

Computational simulation/modeling

Subject of Research

Not applicable

Article Title

Leveraging high spatiotemporal resolution data of pesticides applied to agricultural fields in California to identify toxicity reduction opportunities

Article Publication Date

9-Aug-2023

COI Statement

The authors have declared that no competing interests exist.

Share12Tweet8Share2ShareShareShare2

Related Posts

Captured endangered Preble’s meadow jumping mouse (Zapus hudsonius preblei)

New biobanking partnership safeguards the genetic diversity of America’s endangered species

October 3, 2023
Mangroves

Improved mangrove conservation could yield cash, carbon, coastal benefits

October 3, 2023

How floods kill, long after the water has gone – global decade-long study

October 3, 2023

Host genetics helps explain childhood cancer survivors’ mortality risk from second cancers

October 3, 2023

POPULAR NEWS

  • blank

    Microbe Computers

    59 shares
    Share 24 Tweet 15
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    35 shares
    Share 14 Tweet 9
  • Fossil spines reveal deep sea’s past

    34 shares
    Share 14 Tweet 9
  • Scientists go ‘back to the future,’ create flies with ancient genes to study evolution

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New biobanking partnership safeguards the genetic diversity of America’s endangered species

Improved mangrove conservation could yield cash, carbon, coastal benefits

How floods kill, long after the water has gone – global decade-long study

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 56 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In