• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, January 30, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

A small peptide peps up almond defense against devastating bacteria

Bioengineer by Bioengineer
October 24, 2022
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Over the last decade, the lush olive groves one associates with the Italian countryside have become desiccated, as if stuck in a perpetual winter. The culprit is Xylella fastidiosa, a species of aggressive bacteria that have caused devastating epidemics in several important crops. X. fastidiosa now threatens almonds, olives, and grapevines—staples of Europe’s economy and cuisine.

Olive field

Credit: Emilio Montesinos

Over the last decade, the lush olive groves one associates with the Italian countryside have become desiccated, as if stuck in a perpetual winter. The culprit is Xylella fastidiosa, a species of aggressive bacteria that have caused devastating epidemics in several important crops. X. fastidiosa now threatens almonds, olives, and grapevines—staples of Europe’s economy and cuisine.

There is currently no effective treatment for diseased almond trees infected by these bacteria, which has pushed researchers to develop and test new treatments. At the University of Girona, Spain, Luís Moll and Aina Baró—plus collaborators from the Montesinos’ Lab—demonstrated that small peptides (molecules with a chain of up to 50 amino acids) are a promising treatment to prevent plant diseases induced by X. fastidiosa, such as almond leaf scorch (ALS).

Recently published in Phytopathology, their study tested the effects of one specific peptide, BP178, on ALS when delivered to almond plants by endotherapy, which is similar to a plant vaccine. The authors found that the peptide has two functions for disease prevention: it can directly kill the bacteria, and it can trigger plant defense tactics. Corresponding author Prof. Emilio Montesinos remarks, “We demonstrated that the treatment significantly reduces the pathogen population and disease symptoms and that it induces a strong defense response on almond plants.” Their results agree with similar studies performed by the researchers in other plants like tomato.

This discovery represents a significant step in fighting diseases caused by Xylella fastidiosa. According to the authors, using these compounds offers the possibility of sustainable crop protection and disease management, thanks to the biodegradability of the peptide and the low likelihood of the bacteria developing resistance to it. While this study was conducted with plants in a greenhouse, it is expected that this peptide can extend to nurseries and in-field use via commercial endotherapy systems and through optimizing the cost of peptide production for commercial use. Additionally, future studies can potentially generate novel candidate compounds with the bifunctional action by changing the amino acid sequence to specifically target pathogens, which can be synthetized chemically or produced biotechnologically using microbial or plant biofactories.

For additional details, read “Induction of Defense Responses and Protection of Almond Plants Against Xylella fastidiosa by Endotherapy with a Bifunctional Peptide” published in Vol 112, Number 9 / September 2022 of Phytopathology.
 

Keep up with two of the authors on social media

Twitter: E. Montesinos @montesinos_udg

Facebook: E. Montesinos

Linkedin: E. Montesinos and L. A. Moll

 

Follow us on Twitter @PhytopathologyJ and visit https://apsjournals.apsnet.org/journal/phyto to learn more.

 



Journal

Phytopathology

DOI

10.1094/PHYTO-12-21-0525-R

Article Title

Induction of Defense Responses and Protection of Almond Plants Against Xylella fastidiosa by Endotherapy with a Bifunctional Peptide

Article Publication Date

25-Aug-2022

COI Statement

The author(s) declare no conflict of interest.

Share12Tweet8Share2ShareShareShare2

Related Posts

The team’s new sensor makes use of PEDOT-Cl-coated cotton sandwiched between electrodes.

Under pressure: Breakthrough new material solves problem of wearable sensors

January 30, 2023
Marburg virus

Marburg vaccine shows promising results in first-in-human study

January 30, 2023

A landmark solid material that “upconverts” visible light photons to UV light photons changes how we utilize sunlight

January 30, 2023

Powering wearable technology with MXene textile supercapacitor ‘patch’

January 30, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    64 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Under pressure: Breakthrough new material solves problem of wearable sensors

Marburg vaccine shows promising results in first-in-human study

A landmark solid material that “upconverts” visible light photons to UV light photons changes how we utilize sunlight

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 43 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In