• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, June 9, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

A passage of light leading to a path for a solution

Bioengineer by Bioengineer
May 15, 2023
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Bruce, the protagonist of the movie Bruce Almighty, met God by chance and was given almighty powers. He became human again at the end of the movie, but he enjoyed the moment of being all-powerful and doing whatever he wanted. Things do not always go as one wants in reality. This is especially true in the world of light. However, a research team at POSTECH has successfully controlled “trions,” a breakthrough toward developing what could ultimately be revolutionary optical communication technology.

Figure 1

Credit: POSTECH

Bruce, the protagonist of the movie Bruce Almighty, met God by chance and was given almighty powers. He became human again at the end of the movie, but he enjoyed the moment of being all-powerful and doing whatever he wanted. Things do not always go as one wants in reality. This is especially true in the world of light. However, a research team at POSTECH has successfully controlled “trions,” a breakthrough toward developing what could ultimately be revolutionary optical communication technology.

 

The team of researchers led by Professor Kyoung-Duck Park and PhD candidate Hyeongwoo Lee in the Department of Physic at POSTECH has succeeded in producing high purity trions by using a nanoscale plasmonic waveguide and controlling the location at which the particles were created.

 

Excitons are formed when light is focused on semiconductor material. The exciton, a binding of an electron and a hole, is electrically neutral. Addition of one more electron to an exciton makes a trion. Even though both particles are used to make next-generation optical communications devices and solar cells, trions afford more advantages over excitons. They are better for practical device applications as they are controllable with an electric field and have a weaker binding energy.

 

The team used a “nanoscale plasmonic waveguide” with gap width of about 200 nm (10-9m) to create trions. The waveguide helps change light into “plasmons,” a phenomenon of collective electron oscillations. It also strongly confines plasmons in a space that is smaller than the wavelength of light to transport them to the desired location. When a two-dimensional semiconductor material is transferred onto the waveguide, the material is stretched up along the groove on the waveguide. Focusing light onto the 2D material will form excitons in the semiconductor, and they flow to the center of the waveguide just like water poured through a funnel. The high energy of plasmons helps transport the electrons in the metal part of the waveguide toward the semiconductor. The transported electrons then move toward the center of the waveguide to bond with excitons, ultimately creating trions.

 

The team also successfully controlled the location where trions are created by spatially controlling plasmons with the combination of adaptive optics and nano optics. With this technology, the researchers were able to produce both plasmons and trions at the desired location on the plasmonic waveguide.

 

This research is significant in that “light” was employed instead of “electricity”. The passage that light moves along helped find a solution to development of optical devices. It is also meaningful that the research brought together different disciplines: “excitonics” that studies particles such as excitons and “plasmonics” that explores plasmons. When facing our limits, we tend to find a solution within our field. However, the team thought outside the box to find a solution based on convergence of different disciplines.

 

The research findings are expected to greatly contribute to efficient control of trion-based optical devices and development of highly-efficient devices for optically converting energy. Hyeongwoo Lee, the first author of the paper, said, “I think the research defined a new physical concept that can create and control trions in nanoscale spaces. Based on the research outcome, I am sketching out research on a wide area information and communication technology with semiconductor particles.”

 

The plasmonic waveguide was fabricated by a team led by Hyuck Choo, executive vice president of Samsung Electronics; the pre-analysis of the samples was conducted by a team led by Professor Hong Seok Lee and Professor Sangmin An of Jeonbuk National University; the materials used in the experiment were prepared by a team led by Professor Ki Kang Kim of Sungkyunkwan University; and measurements were conducted  together with Yeonjeong Koo, Huitae Joo, and Mingu Kang of the Department of Physics at POSTECH.

 

The research was published in the international journal Nature Communications on April 12, 2023 and was supported by the National Research Foundation of Korea, Ministry of Science and ICT, and the Samsung Science and Technology Foundation.



Journal

Nature Communications

DOI

10.1038/s41467-023-37481-1

Article Title

All-optical control of high-purity trions in nanoscale waveguide

Article Publication Date

12-Apr-2023

Share12Tweet7Share2ShareShareShare1

Related Posts

Block diagram of the proposed full-duplex (FD) transceiver

Preparing the stage for 6G: A fast and compact transceiver for Sub-THz frequencies

June 9, 2023
New method takes the uncertainty out of oxide semiconductor layering

New method takes the uncertainty out of oxide semiconductor layering

June 9, 2023

Researchers to explore potential of new treatment against vascular dementia

June 9, 2023

University of Arizona launching computer science and engineering B.S.

June 8, 2023

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    42 shares
    Share 17 Tweet 11
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Deep sea surveys detect over five thousand new species in future mining hotspot

    35 shares
    Share 14 Tweet 9
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Preparing the stage for 6G: A fast and compact transceiver for Sub-THz frequencies

New method takes the uncertainty out of oxide semiconductor layering

Researchers to explore potential of new treatment against vascular dementia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 51 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In