• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, December 10, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

A new qubit platform is created atom by atom

Bioengineer by Bioengineer
October 5, 2023
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Seoul, Korea – Researchers at the IBS Center for Quantum Nanoscience (QNS) at Ewha Womans University have accomplished a groundbreaking step forward in quantum information science. In partnership with teams from Japan, Spain, and the US, they created a novel electron-spin qubit platform, assembled atom-by-atom on a surface. This breakthrough was published in the journal Science on 2023/10/06.

Figure 1

Credit: Institute for Basic Science

Seoul, Korea – Researchers at the IBS Center for Quantum Nanoscience (QNS) at Ewha Womans University have accomplished a groundbreaking step forward in quantum information science. In partnership with teams from Japan, Spain, and the US, they created a novel electron-spin qubit platform, assembled atom-by-atom on a surface. This breakthrough was published in the journal Science on 2023/10/06.

Unlike previous atomic quantum devices on surfaces where only a single qubit could be controlled, the researchers at QNS successfully demonstrated the ability to control multiple qubits simultaneously, enabling the application of single-, two-, and three-qubit gates.

Qubits, the fundamental units of quantum information, are key to quantum applications such as quantum computing, sensing, and communication. PHARK Soo-hyon, one of the QNS principal investigators, highlights the significance of this project. “To date, scientists have only been able to create and control a single qubit on a surface, making this a major step forward towards multi-qubit systems,” he stated.

Led by BAE Yujeong, PHARK Soo-hyon, and director Andreas HEINRICH, QNS developed this novel platform, which consists of individual magnetic atoms placed on a pristine surface of a thin insulator. These atoms can be precisely positioned using the tip of a scanning tunneling microscope (STM) and manipulated with the assistance of electron spin resonance (ESR-STM). This atomic-scale control has allowed researchers to manipulate quantum states coherently. They also established the possibility of controlling remote qubits, opening the path to scaling up to tens or hundreds of qubits in a defect-free environment.

BAE Yujeong pointed out, “It is truly amazing that we can now control the quantum states of multiple individual atoms on surfaces at the same time”. The atomic-scale precision of this platform allows for the remote manipulation of the atoms to perform qubit operations individually, without moving the tip of the STM.

This research marks a significant departure from other qubit platforms, such as photonic devices, ion and atom traps, and superconducting devices. One of the unique benefits of this surface-based electron-spin approach is the myriad of available spin species and the vast variety of two-dimensional geometries that can be precisely assembled.

Looking forward, the researchers anticipate quantum sensing, computation, and simulation protocols using these precisely assembled atomic architectures. Altogether, the work by the QNS researchers is expected to usher in a new era of atomic-scale control in quantum information science, cementing Korea’s position as a global leader in the field.



Journal

Science

DOI

10.1126/science.ade5050

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

An atomic-scale multi-qubit platform

Article Publication Date

6-Oct-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Prithviraj Bose, M.D.

ASH: Targeted oral therapy reduced disease burden and improved symptoms for patients with rare blood disorder

December 9, 2023
Lab photo.jpg

TTUHSC’s ARPA-H membership will spur innovation, improve access for West Texas patients

December 9, 2023

Tracing how the infant brain responds to touch with near-infrared spectroscopy

December 9, 2023

Doctors discover many patients at UNC’s Inflammatory Bowel Disease Clinic screen positive for malnutrition

December 8, 2023

POPULAR NEWS

  • Figure 1

    Understanding rapid tendon regeneration in newts may one day help human athletes

    85 shares
    Share 34 Tweet 21
  • Photonic chip that ‘fits together like Lego’ opens door to semiconductor industry

    36 shares
    Share 14 Tweet 9
  • Study finds increasingly popular oral nicotine pouches do little to curb smokers’ cravings

    35 shares
    Share 14 Tweet 9
  • SMART researchers pioneer novel microfluidic method to optimise bone marrow stem cell extraction for advanced cell therapies

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

ASH: Targeted oral therapy reduced disease burden and improved symptoms for patients with rare blood disorder

TTUHSC’s ARPA-H membership will spur innovation, improve access for West Texas patients

Tracing how the infant brain responds to touch with near-infrared spectroscopy

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 58 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In