• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, May 20, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

A bright future: Seeking a third generation of better performing solar cells

Bioengineer by Bioengineer
April 5, 2022
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

For a greener and more sustainable economy, building better and more powerful solar cells is a key research goal within the clean energy sector. But, in a typical single-junction solar cell, performance is capped at what is called the Shockley–Queisser limit (a theoretical limit for the maximum efficiency that a solar cell can reach). Efficiency determines how much of the light energy (photons) absorbed by the solar cell can be converted into usable electric current. The Shockley–Queisser limit puts the maximum possible efficiency at 33.7 percent for semiconductor-based solar cells.

Hot carrier solar cells (HCSC) can prevent the thermalization of highly energized photocarriers like electron-hole pairs.

Credit: Ferry, Whiteside, and Sellers, doi 10.1117/1.JPE.12.022204.

For a greener and more sustainable economy, building better and more powerful solar cells is a key research goal within the clean energy sector. But, in a typical single-junction solar cell, performance is capped at what is called the Shockley–Queisser limit (a theoretical limit for the maximum efficiency that a solar cell can reach). Efficiency determines how much of the light energy (photons) absorbed by the solar cell can be converted into usable electric current. The Shockley–Queisser limit puts the maximum possible efficiency at 33.7 percent for semiconductor-based solar cells.

Over the years, scientists have explored and developed new paradigms for solar cell designs and materials, in attempts to inch closer to and even surpass this efficiency limit. They have not yet been successful, but the prospects are improving thanks to recent research.

Poor efficiency of solar cells can be due to many factors. One major reason is the thermalization of excess energy. During this thermalization, the excess energy absorbed by a charged particle (electron and hole) pair—that is, more energy than the particle needs to become mobile within the material’s structure and generate electricity—is lost to the lattice structure of the material as heat. Studies show that in a typical single-junction semiconductor solar cell, nearly 50 percent of the absorbed solar energy is lost to thermalization. If this energy could be captured and converted to electricity as well, solar energy would become a tremendously powerful sustainable resource.

Decades ago, two scientists, R. T. Ross and A. J. Nozik, proposed a new type of solar cell called the hot carrier solar cell (HCSC) in which this excess energy could be harvested before it was lost. In an HCSC, the idea is to isolate the particles carrying excess energy (hot carriers) and store them in the lattice structure such that the energy is not lost. Subsequent experiments have proven the possibility of isolating hot carriers. But no operational HCSC has been built to date.

Now, a report published in Journal of Photonics for Energy (JPE), by researchers from Arizona State University and the University of Oklahoma in the United States, led by David K. Ferry, presents the many conditions that must be fulfilled for a HCSC to be realized and explores ways to fulfill these conditions.

According to JPE Editor-in-Chief Sean Shaheen, “The paper elucidates a novel pathway to realizing hot carrier solar cells, which can exceed the typical efficiency limit on solar cells. The proposed pathway involves use of satellite valleys in the band structure of semiconductors, where hot carriers can be temporarily stored without losing energy. While it does not provide a complete solution to the problem, it provides a different way of understanding and designing hot carrier solar cells that could motivate other researchers to pursue specific device structures based on the concept.”

Semiconductors conduct electricity when a charged particle at a lower level of energy, called the valence band, gains enough energy to jump over across an energy gap to reach a high energy level, known as the conduction band, where it is free to move. The novel approach proposed involves isolating hot carriers within higher energy valleys—or local maxima—among the conduction bands. Ferry explains, “The valley photovoltaic approach helps by reducing the loss to heat by changing the kinetic energy of the particle into potential energy, that is, changing the form of energy from one that can be lost to one that is stored.”

The scientists were able to elucidate this approach in an indium-gallium-arsenide and aluminum (InGaAs/InAlAs) based semiconductor material that is sensitive to light, and therefore, a potential material for solar cells.

The paper presents the essential groundwork for future research on enhancing the efficiency of solar cells, opening doors to a potential third generation of solar cells that work very differently from existing ones and could break through the Shockley–Queisser limit, realizing the dream of Ross and Nozik.

A solar-powered economy is on the way, with a potentially brighter future for us all.

Read the open access article by Ferry, Whiteside, and Sellers, “Pathways to hot carrier solar cells,” J. Photon. Energy 12(2) 022204 (2022), doi 10.1117/1.JPE.12.022204.



Journal

Journal of Photonics for Energy

DOI

10.1117/1.JPE.12.022204

Article Title

Pathways to hot carrier solar cells

Article Publication Date

4-Apr-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Wheat field in Bangladesh

Researchers have developed a potential super wheat for salty soils

May 20, 2022
Spiny chromis family

‘Traffic calming’ boosts breeding on coral reefs

May 20, 2022

Snake trade in Indonesia is not sustainable enough — but it could be

May 20, 2022

‘Moth motorways’ could help resist climate change impact

May 20, 2022

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Weather/StormsZoology/Veterinary ScienceVirologyUrbanizationVehiclesVirusWeaponryVaccineViolence/CriminalsUrogenital SystemVaccinesUniversity of Washington

Recent Posts

  • Researchers have developed a potential super wheat for salty soils
  • ‘Traffic calming’ boosts breeding on coral reefs
  • Snake trade in Indonesia is not sustainable enough — but it could be
  • ‘Moth motorways’ could help resist climate change impact
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....