• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, March 24, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

A better way to produce fertilizers

Bioengineer by Bioengineer
March 8, 2023
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Fertilizers are one of the main reasons that we are able to grow enough crops to feed the almost 8 billion humans living on Earth. Modern agriculture depends largely on nitrogen-based fertilizers, which significantly increase the yield of crops. Unfortunately, a great portion of these fertilizers are produced at an industrial level, consuming fossil fuel energy and causing nitrogen pollution.

A hypothetical engineered nitrogen-fixing organism promoting wheat growth, highlighting current areas of focus for engineering nitrogenase in synthetic biology.

Credit: None

Fertilizers are one of the main reasons that we are able to grow enough crops to feed the almost 8 billion humans living on Earth. Modern agriculture depends largely on nitrogen-based fertilizers, which significantly increase the yield of crops. Unfortunately, a great portion of these fertilizers are produced at an industrial level, consuming fossil fuel energy and causing nitrogen pollution.

One attractive way to minimize our use of industrially produced fertilizers is to harness the power of nitrogenases. These enzymes, found in various microorganisms, can carry out nitrogen fixation, i.e., the conversion of nitrogen gas (N2) to ammonia (NH3), which is a more biologically useful form for plants. Using bioengineering tools, we could introduce the genes that code for nitrogenases from one species of bacteria into another species (a ‘heterologous host’). The ultimate goal of this process would be to engineer a new type of bacteria that can survive in the field alongside crops and provide plants with NH3, thereby reducing the need for so much industrial fertilizer.

However, this strategy has proven to be difficult to pull off, and researchers are still trying to overcome many roadblocks. Motivated by this, a team of scientists including Professor Mark Isalan from Imperial College London, UK, recently published a review article online, on 7 February 2023 in Volume 5 of BioDesign Research. In it, they highlight recent progress towards understanding and surpassing the challenges found while engineering organisms to express and use nitrogenase.

Nitrogenase and its associated enzymes are coded by nif gene clusters, which are present across various species of bacteria with some variations. Though these gene clusters are complex, some researchers have managed to pinpoint a minimal set of genes that are essential for nitrogen fixation. This is essential knowledge for the logical next step: transferring custom nif genes to a heterologous host.

One of the main issues in engineering nitrogen-fixating bacteria is making sure the transferred nif clusters are compatible with the survival of the organism. As explained in the review, producing nitrogenases and using them is a resource- and energy-intensive endeavor for bacteria. If the engineered organisms derive no benefit from expressing the new genes, they are very likely to be outcompeted by other bacteria in the soil or escape the ‘useless’ genes by evolving against them. Moreover, the expression of nitrogenase is usually regulated by complex chemical pathways that, in turn, are regulated by environmental variables, including nitrogen concentration or chemical signaling from plants. Thus, many approaches for increasing NH3 production in heterologous hosts haven’t led to much success. Another thing to keep in mind is that nitrogenases are easily damaged by oxygen, and the heterologous host will need mechanisms to avoid this issue.

The review puts great emphasis on symbiosis, as the survival of engineered organisms out in the field will depend on their relationship with the target crop. For starters, the crop plant should ‘reward’ nearby nitrogen-fixating organisms by exchanging sugars with them, as well as provide appropriate chemical signals to guide nitrogenase expression. In turn, the bacteria should ideally kick off NH3 production only when near the plant’s roots. Hence, the overall goal of engineering organisms towards a symbiotic relationship is to give both species an edge in the fight for survival. However, as Isalan remarks, we are yet to achieve this target: “Survival of engineered bacteria in real-world environments has not yet been explored in detail, and much work needs to be done toward engineering synthetic symbioses that survive competition with other soil microorganisms.”

The article also introduces a promising approach called ‘directed evolution,’ which consists of controlled laboratory experiments where engineered bacteria are made to compete with one another. The experiments are set up so that the ‘winning’ genes are more suitable in a real environment or, alternatively, shed some light on specific molecular mechanisms of nitrogen fixation.

There are certainly many hurdles to overcome if we want engineered bacteria to help us fertilize the soil, and there are even more possible ways in which we may tackle these challenges. “Whichever approach is used, improving nitrogenase activity toward nitrogen-fixing plants is a complex and challenging engineering problem, which will require creative solutions as varied and dynamic as those we see in the natural world,” concludes Isalan. Only time will tell what scientists can come up with in this field!

###

Reference

Authors

Emily M. Bennett1, James W. Murray1, and Mark Isalan1*

Corresponding author email ID: [email protected]  

Affiliation

1Department of Life Sciences, Imperial College London

 

 



Journal

BioDesign Research

DOI

10.34133/bdr.0005

Article Publication Date

10-Jan-2023

Share12Tweet7Share2ShareShareShare1

Related Posts

The Lancet Commercial Determinants of Health Series: Rebalancing global power asymmetries to substantially improve human and planetary health

THE LANCET: Health experts call for bold action to prioritize health over profit

March 24, 2023
Jared Smith shakes hands with Susan Hubbard

ORNL malware ‘vaccine’ generator licensed for Evasive.ai platform

March 23, 2023

Black, Latinx Californians face highest exposure to oil and gas wells

March 23, 2023

UChicago scientists discover easy way to make atomically-thin metal layers for new technology

March 23, 2023

POPULAR NEWS

  • ChatPandaGPT

    Insilico Medicine brings AI-powered “ChatPandaGPT” to its target discovery platform

    64 shares
    Share 26 Tweet 16
  • Northern and southern resident orcas hunt differently, which may help explain the decline of southern orcas

    44 shares
    Share 18 Tweet 11
  • Skipping breakfast may compromise the immune system

    42 shares
    Share 17 Tweet 11
  • Insular dwarfs and giants more likely to go extinct

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

THE LANCET: Health experts call for bold action to prioritize health over profit

ORNL malware ‘vaccine’ generator licensed for Evasive.ai platform

Black, Latinx Californians face highest exposure to oil and gas wells

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 48 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In